

HST, JWST, and the Future

John Mather JWST Senior Project Scientist Goddard Space Flight Center

JWST Science

First Light and Re-Ionization

Birth of stars and proto-planetary systems

Assembly of Galaxies

James Webb Space Telescope

Organization

- Mission Lead: Goddard Space Flight Center
- Senior Project Scientist: Dr John Mather
- International collaboration: ESA & CSA
- Prime Contractor: Northrop Grumman Aerospace Systems
- Instruments:
- Near Infrared Camera (NIRCam) Univ. of Arizona
- Near Infrared Spectrograph (NIRSpec) ESA
- Mid-Infrared Instrument (MIRI) JPL/ESA
- Fine Guidance Sensor (FGS) & Tunable Filter Imager – CSA
- Operations: Space Telescope Science Institute

Description

- Deployable infrared telescope with 6.5 meter diameter segmented adjustable primary mirror
- Cryogenic temperature telescope and instruments for infrared performance
- · Launch on an ESA-supplied Ariane 5 rocket to Sun-Earth L2
- 5-year science mission requirement (10-year propellant lifetime)

HOW JWST WORKS

JWST science objectives require the largest cryogenic telescope ever constructed

- An L2 point orbit was selected for JWST to enable passive cryogenic cooling
 - Station keeping thrusters fire ~ every 3 weeks to maintain this orbit
 - Propellant sized for 11 years (delta-v ~ 93 m/s)

- The JWST can observe the whole sky while remaining continuously in the shadow of its sunshield
 - Field of Regard is an annulus covering 35% of the sky
 - The whole sky is covered each year with small continuous viewing zones at the Ecliptic poles

JWST Instrumentation

Instrument	Science Requirement	Capability
NIRCam Univ.Az/LMAT	Wide field, deep imaging ▶0.6 µm - 2.3 µm (SW) ▶2.4 µm - 5.0 µm (LW)	Two 2.2' x 2.2' SW Two 2.2' x 2.2' LW Coronagraph
NIRSpec ESA/Astrium	Multi-object spectroscopy ,0.6 µm - 5.0 µm	9.7 Sq arcmin Ω + IFU + slits 100 selectable targets: MSA R=100, 1000, 3000
MIRI	Mid-infrared imaging → 5 µm - 27 µm	1.9' x1.4' with coronagraph
ESA/UKATC/JPL	Mid-infrared spectroscopy ▶ 4.9 µm - 28.8 µm	3.7"×3.7" – 7.1"×7.7" IFU R=3000 - 2250
FGS/TFI CSA	Fine Guidance Sensor 0.8 μm - 5.0 μm Tunable Filter Imager JI.6 μm - 4.9 μm	Two 2.3' x 2.3' 2.2' x 2.2' R=100 with coronagraph

NASA

End of the dark ages: first light and reionization

... to identify the first luminous sources to form and to determine the ionization history of the early universe.

> Hubble Ultra Deep Field

Mather Venice 2010

Pair-production SNe as First Stars

Days Since Explosion

• Good news: JWST can easily detect these when stars first formed (but not as transients).

• Interesting news: pair-production instability doesn't necessarily require primordial composition.

Gamma Ray Burst 4/23/09 was one of the most distant objects yet found (z = 8.2) – supernova jet aimed at us!

JANUS GRB (SMEX) search proposed, could see to z = 12

Mather Venice 2010

Dark Energy!

MacArthur Fellow 2008 - Adam Riess

WST, Dark Energy, Dark Matter

- Problem: determine acceleration parameter now and in the past
- Multiple techniques required due to likely systematic errors
- JDEM/IDECS wide-field surveys will find targets for JWST
- JWST contributes by
 - Measuring very distant supernovae (standard candles?)
 - SNe rest-frame IR light curves maybe better standard candles?
 - Measuring effects of dark matter too (distorted images of distant objects, masses of galaxies and clusters out to high redshift, rotation curves, etc.)
 - Cosmic archeology at high redshift (prior to acceleration, formation of galaxies and clusters)
 - Measuring Cepheids in galaxies with maser distances

How does environment affect star-formation and viceversa? What is the sub-stellar initial mass function?

- Massive stars produce winds and radiation
 - Either disrupt star formation, or causes it.
- The boundary between the smallest brown dwarf stars and planets is unknown
 - Different processes? Or continuum?
- Observations:
 - Survey dark clouds, "elephant trunks" and star-forming regions

The Eagle Nebula as seen in the infrared

Exoplanets

- As of Sept. 9, 2010, 490 total:
 - Radial velocity: 459 planets, 45 multiple planet systems
 - Transiting: 101 planets, including 6 multiples (most good JWST targets)
 - Microlensing: 10 planets, 1 multiple system
 - Imaging: 13 planets, 1 system (a triple) (JWST has 3 coronagraphs)
 - Timing: 8 planets, 2 multiple planet systems
 - + predictions from dust disk structures
- Kepler launched Mar. 6, 2009, monitors ~ 100,000 stars, to find handful of Earths, thousands of others
- TESS (Transiting Exoplanet Survey Satellite), proposed SMEX, would survey nearest stars, best candidates for detailed follow-up with JWST
- JWST Transits Working Group established M. Clampin

Primary

Secondary

- Planet blocks light from star
- Visible/NIR light (Hubble/JWST)
- Radius of planet/star
- Absorption spectroscopy of planet's atmosphere
- JWST: Look for moons (by timing), constituents of atmosphere, Earth-like planets with water, weather

- Star blocks light from planet
- Mid-Infrared light (Spitzer/JWST)
- Direct detection of photons from planet
- Temperature of planet
- Emission from surface
- JWST: Atmospheric characteristics, constituents of atmosphere, map planets

Mather Venice 2010 Plane

Dwarf Planets and Plutoids

May be 2000 more when whole sky is surveyed With moving object tracking JWST is perfect tool Mather Venice 2010

JWST Mirror Fabrication

JWST Mirrors made of beryllium
Lightweight and stable at 40 K
Brush-Wellman

Primary mirror segment

Raw Be billet (two mirrors)

Machined & lightweighted by Axsys
92% material is removed

Mirrors polished at Tinsley Segment cryo-figure: 20 nm

Cryo-surface figure

Ambient

Actuators & Strongback

Gold Coating

Flight Mirror Cryogenic Testing

First Flight Mirrors Complete

Mid Frequency: RMS 12.1nm, P-V 56nm

Mid Frequency: RMS 8.2nm, P-V 49nm

High Frequency: RMS 3.2nm, P-V 153nm

JWST

Secondary Mirror

• SM flight spare meets requirements

JWST Telescope Aft Optics

 Aft optics and Aft optics bench complete

JWST Telescope Optics

Tertiary Mirror

58 nm RMS (-Tilt, -Power)

JWST Telescope Optics

Fine Steering Mirror

2.3 nm RMS

Predicted Image Quality

2.0'

-5.22

The NIRCam instrument will image large portions of the sky identifying primeval galaxy targets for the other instruments

- Developed by the University of Arizona with Lockheed Martin ATC
 - Operating wavelength: 0.6 5.0 microns
 - Spectral resolution: 4, 10, 100
 - Field of view: 2.2 x 4.4 arc minutes
 - Angular resolution (1 pixel): 32 mas < 2.3 microns, 65 mas > 2.4 microns
 - Detector type: HgCdTe, 2048 x 2048 pixel format, 10 detectors, 40 K passive cooling
 - Refractive optics, Beryllium structure
 - Simple coronagraph with choice of Lyot masks in wheel
- Supports OTE wavefront sensing

NIRSpec Schematic $0.6-5.0 \ \mu m, R = 100, 1000, 3000$

NIRSpec: ESA & Astrium

- > 100 Objects Simultaneously
- 10 square arcminute FOV

Direction of Dispersion

• Implementation:

- 3.4' Large FOV Imaging Spectrograph
- 4 x 175 x 384 element Micro-Shutter Array
 - 250,000 pixels, 203 x 463 mas, pitch 267 x 528 mas
- 2 x 2k x 2k HgCdTe Detector Arrays
- Fixed slits and IFU for backup, contrast
- SiC optical bench & optics

250,000 pixel cryogenic microshutter array system

Mather Venice 2010

Engineering Test Units Instruments at GSFC

OSIM

http://www.jwst.nasa.gov/webcam.html

ISIM Structure Cryoset Test

Optical End-to-End Test @ JSC

Goals of Test

- → Verify Optical alignment
- → Verify workmanship
- → Thermal balance

Test sources mounted on the AOS entrance. Inward sources sample the Tertiary Mirror. Outward sources make a pass and a half thru the OTE optics.

Sunshield Development

- JWST's sunshield is the key element that allows passive cooling to 40K
- The size of a tennis court, the five-layer sunshield is deployed after launch
- Key sunshield technical challenges have been addressed using pathfinders

Membrane folding strategy

Membrane covers

Packaging for launch

Membrane shape

Deployment

Membrane Deployment

- NGAS have developed a managed approach to sunshield deployment
- Full scale models validate deployment approach, membrane folding and deployment boom performance

Backplane/Sunshield Mockup

Sunshield systems testing

• 1/3rd scale Sunshield thermal performance test

- Successfully Completed Spacecraft Preliminary Design Review (PDR) in 2009
- Successfully completed & delivered SC Sim 1A
- Spacecraft Critical Design Audit: June 2012

CTP in Lab testing FSW Release 1.x

Software Development Lab CTP EM

SC Sim 1A upgrade

JWST Flight SCAT at Test Site Mather Venice 2010

Completed HGA STM

Transponder Transmitter Slice (in progress)

Transponder Receiver Slice

Frontier Science Opportunities with the James Webb

Space Telescope

June 5-7 2011 Jackson Lake Lodge Grand Teton National Park, Wyoming

SCIENCE ORGANIZING COMMITTEE

Wendy Freedman (Chair), Alan Boss, Mark Dickinson, Dan Eisenstein, Therese Encrenaz, Lisa Kewley, Sara Seager, Alicia Soderberg, Massimo Stiavelli, Xander Tielens, Christine Wilson

> For more information and to register www.stsci.edu/institute/conference/jwst2011

SPICA

- Japanese 3.5 m 4.5 K actively cooled telescope, launched on H-II rocket to L₂
- Cooling design mature
- 5-200 µm with cameras and spectrometers
- Seeking international partnership

$Con-X + XEUS \rightarrow IXO$

Advanced Technology Large Space Telescope

Figure 6: (Left) Stowed 9.2-meter OTA. Colored boxes are instrument envelopes. (Center) Deployed. (Right) Sunshield and arm-mounted OTA. Spacecraft bus is on sun side of sunshield.

Single Aperture Far IR Telescope

 20 - 500 microns wavelength, cooled to ~ 4 K, operating at L2, 8 - 10 m aperture

TPF-Interferometer

Mather Venice 2010

- 28-meter filled aperture telescope
 - Three-mirror anastigmat
 - 36 segments, 4-meter flat-flat
 - Composite replica optics
 - Gold mirror coatings
- Multi-layer sunshade
 - Passive cooling to ~30K
- IR Coronagraph for planetary detection/ characterization
 - 10⁷ contrast at 100 mas
- IR camera and spectrograph for general imaging/spectroscopy
 - 2 x 2 arcmin FOV
- Launched with EELV heavy to L2
 - On-orbit assembly option

Why astronomy doesn't pay for everything

JWST is making excellent technical progress

JWST will be the dominant astronomical facility for a decade, and will undertake a broad range of investigations by the astronomical community

JWST remains the brilliant advance recommended by the 2000 Decadal Survey

- JWST science underpins the science recommended by the 2010 Decadal Survey
- JWST has the capability to address new observing opportunities such as exoplanet characterization.....

SN 2006 gy – brightest supernova

- Could be the first observation of a pair-production instability, from the death of a very massive star.
 - Stars are normally held up by the balance of light pressure and gravity
 - Gamma rays producing electron/positron pairs scatters light, reducing pressure. Instability creates runaway collapse.
- A nearby analog for the first stars in the Universe.

$\gamma \rightarrow e^- + e^+ \rightarrow \gamma$

• Progenitor was similar to Eta Carina. Hubble Image of Eta Carina

Mather Venice 2010

The Laser Interferometer Space Antenna (LISA)

- New branch of astronomy!
- Space-based gravitational wave detector
- 3 spacecraft in 5,000,000 km equilateral triangle
- Laser interferometer senses changes of 1/100 size of an atom

Sensitivity & Resolution

- Cameras and R ~ 100 spectroscopy background limited at all wavelengths
 - 6.5 m mirror much larger than HST, Spitzer big gains
 - Background dominated by zodi light, and at > 12 μ m from thermal emission from sunshield
 - Other stray light from galaxy, sometimes Earth or Moon
- NIRSpec sensitivity detector limited at $R \sim 1000$
- Image quality
 - Diffraction limited ($\lambda/14$ rms wavefront) at 2 μ m (better than ground AO in Strehl and much better Field of View)
 - 0.032 arcsec pixels in NIRCam short band (Nyquist @ $2 \mu m$)
 - 0.065 arcsec in NIRCam long band and .068 in Fine Guider
 - 0.2 x 0.45 arcsec shutters for NIRSpec
 - 0.11 arcsec pixels for MIRI camera
 - 0.19 0.28 arcsec pixels for MIRI image slicer integral field unit

30 – 300 m Wavelength Radio Telescope on Far Side of Moon

Mather Venice

Low frequency radio observations require only lightweight dipoles

lonosphere blocks access from Earth 54 surface

SPIRIT and SPECS

SPIRIT

Space Infrared Interferometric Telescope

Submillimeter Probe of the Evolution of Cosmic Structure

SPIRIT - deployed boom linear array, rotating to fill (u,v) plane SPECS - separated spacecraft array, with tethers for faster rotation

Mather Venice 2010

Where they are

