In-Flight Performance

0

Wide Field Camera 3

Randy Kimble NASA/Goddard Space Flight Center

Origins/Purpose of WFC3

- WFC3 originated in 1997/1998 when HST's planned observing lifetime was first extended from 2005 to 2010: conceived for installation during Servicing Mission 4, to extend and enhance HST's imaging capability
- General purpose "panchromatic" imager (200-1700 nm), developed as a facility instrument by HST Project
 - Ball Aerospace was principal outside partner; much of the work inhouse at Goddard Space Flight Center
 - Additional key contributions from e2v, Teledyne, Barr, Moog
 - Day-to-day science oversight from GSFC and STScI
 - External Scientific Oversight Committee, chaired by Bob O'Connell of U. of Virginia

WFC3 Interior Configuration

CCD Detectors

- 4K x 4K, low-noise, UV-optimized CCDs from e2v
- Camera heads built by Ball Aerospace

UV/Visible Channel Format Comparison of HST Imagers

Channel	Pixel Format	Pixel ScaleFOV(arcsec)(arcsec)		FOV/ WFC3
WFC3/UVIS	4102×4096	0.039	162×162	1.00
ACS/WFC	4096×4096	0.049	202×202	1.56
ARC/HRC	1024×1024	0.026	26×29	0.029
WFPC2/WF	800×800 (×3)	0.100	80×80 (×3)	0.73
WFPC2/PC	800×800	0.0455	36×36	0.051

WFC3 Interior Configuration

IR Detectors

- The novel 1.7 micron cutoff wavelength of the IR array (left), developed by Teledyne Imaging Sensors (formerly Rockwell Scientific), permits low-darkcurrent operation at a temperature of 145 K, achievable with thermo-electric cooling alone.
- The development program was WFC3's biggest technical challenge, but in the end yielded a few "just in time" gems.

Infrared Channel Format Comparison of HST Imagers

Channel	Pixel Format	Pixel Scale (arcsec)	FOV (arcsec)	FOV/ WFC3
WFC3/IR	1014×1014	0.13	123×136	1.00
NICMOS/NIC3	256×256	0.200	51×51	0.155
NICMOS/NIC2	256×256	0.075	19×19	0.022

Ready to Go

In-Flight Performance of Wide Field Camera 3

HST III Conference, Venice 2010 GSFC)

In-Flight Performance of Wide Field Camera 3

WFC3 Heading In

Early Release Observations

HST III Conference, Venice 2010 GSFC)

In-Flight Performance of Wide Field Camera 3

SMOV Results in a Nutshell

- Instrument operating completely nominally (mechanisms, electronics, thermal control) – all redundant systems on primary side
- Image quality excellent, in good agreement with ground test
- Detectors performing very well
- Throughput 5-15% higher than ground test predictions

Image Quality

Encircled energy appropriate to an HST imager

UVIS:

- ~79% in 0.25 arcsec diam at 633nm
- Same in UV (finer diffraction limit; more scatter)

IR:

- 56% in 0.25 arcsec diam at 1.0
- 46% in 0.25 arcsec diam at 1.6

F625W, ~20x20 arcsec, 6 dex log stretch

F160W, ~20x20 arcsec, 6 dex log stretch

UVIS Detector Has Low Read Noise and Dark Current

- Read noise is ~3.1 e- rms for all four readout amps
- Median dark current <3 e-/pixel/hr
 - Higher than ground test and slowly growing, but still negligible
 - Hot pixel tail slowly growing with radiation damage
- These low values are particularly valuable for WFC3 with its fine sampling (0.039"/pixel) and its emphasis on UV and narrowband observing → low sky counts

IR Dark Current and Read Noise Slightly Improved vs. Ground Test

- Median dark rate ~0.05 e/pix/s, only 0.6% of pixels above spec of 0.4
- Effective noise reading up the ramp is actually a bit lower in flight than in thermal-vac for long exposures: (average of the 4 quadrants shown)

# of Reads	3	8	15	
Effective noise (e- rms; SMOV)	19.6	16.0	12.4	Flight
Effective noise e- rms; thermal-vac)	20.8	17.8	14.6	Ground

- Combining read noise with excellent dark current, very well satisfies goal of being zodiacal-background-limited for long exposures in broad bands (zodi rates from a few tenths to >1 e-/pix/s)
- ~2.5% pixels flagged as "bad" low QE, high dark, unstable, open

Performance Metrics vs. Other HST Imagers

HST III Conference, Venice 2010 GSFC)

Performance Metrics vs. Other HST Imagers (2)

Very Exciting Capability – Slitless Spectroscopy with WFC3's IR Grisms

- G102 (0.8 1.1µm; R ~ 210)
- G141 (1.1 1.6µm; R ~ 130)

Very high end-to-end throughput

IR Grism Images from GOODS Field

- SOC did a very nice demonstration project in ERS program
 Two orbits in each grism
- Straughn et al. showed a number of emission-line galaxies

- Community has definitely noticed this capability
- 20% of prime GO orbits in Cycle 18 selection to IR grisms

HST III Conference, Venice 2010 GSFC) In-Flight Performance of Wide Field Camera 3

Photometric Stability

- Photometric stability has been excellent
- UVIS: ~0.3% rms on bright standard stars over 15 months
- IR: ~0.5% rms in similar monitoring
- No discernible trend in either channel
- Few % QEH issue intrinsic to these CCDs completely controlled in flight using lamp flash protocol developed in lab test in the year before launch

Photometric Stability – UVIS

CTE Degradation

• Compare signal levels in long vs. short exposures (left)

 Deficit in short exposures tracks linearly with rows from readout – classic signature of parallel CTE loss

CTE Degradation (2)

Expected effect, but strength 2-3x stronger than ACS loss at same point in mission – expected comparable

- Probable contributor is greater strength of SAA at solar minimum when SM4 occurred vs. solar max of SM3B
 - STScI examining HST CCD histories to look for such modulation
 - Recent preprint by Massey suggests ACS CTE degradation also has been worse recently
 - Rate of degradation should slow as solar activity picks up

What to do about it?

- WFC3 offers a potentially useful charge injection capability; being evaluated as part of Cycle 18 cal program
 - >10,000 e- of "fat zero" at the cost of 15 e- rms noise
 - Periodic line injection option may provide significant benefit
- Pixel-based correction algorithms (e.g. Anderson, Massey) have also shown significant promise

IR Persistence

Image persistence is a well known feature of HgCdTe arrays

- <1/2 x full well, very small, essentially gone by next orbit
- Strongly saturated sources can linger for hours
- STScI taking manual scheduling steps to avoid worst such situations
- Developing tools to enable removal
- Be alert to this issue

Deep field exposure following bright star cluster

In-Flight Performance of Wide Field Camera 3

IR Rate-Dependent Response

"Reciprocity failure", "count-rate non-linearity", "Bohlin effect": fewer counts out per photon in at low input rates

- Smaller effect than for NICMOS (which showed 3-6%/dex), but still present
- Lab measurements on flight spares: 0.3 1.0% /dex
- In-flight measurements comparing cluster observations with ACS, NICMOS:

- 1.1% /dex (ISR WFC3 2010-07, A. Riess)

 Attempting WFC3-only determination using varying Earth limb background

Information Resources

At STScI WFC3 site: www.stsci.edu/hst/wfc3

WFC3 Instrument Handbook, v. 2.1
WFC3 Data Handbook

Instrument Science Reports

Happy observing!

Scare from IR Spots

First few months after launch, dark spots appeared in IR sky

- Found to be on Channel Select Mechanism fold mirror, not detector
- Large particles, localized coating problem?
- Fortunately, appears to have stopped – no new obvious features since January, 2010

In-Flight Performance of Wide Field Camera 3