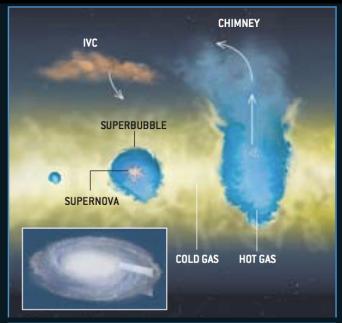
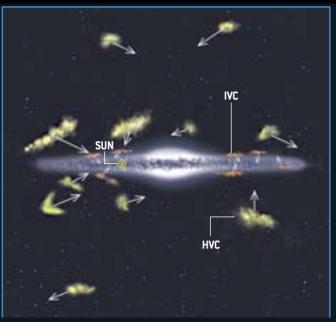

LOW HI COLUMN HIGH-VELOCITY CLOUDS (HVC): GALACTIC OR EXTRAGALACTIC?


Nicolas Lehner
University of Notre Dame


Main collaborator: Chris Howk

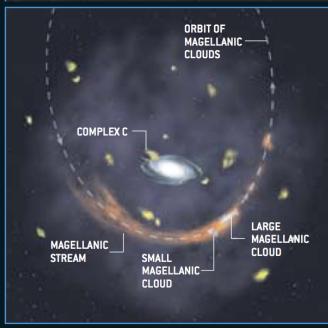
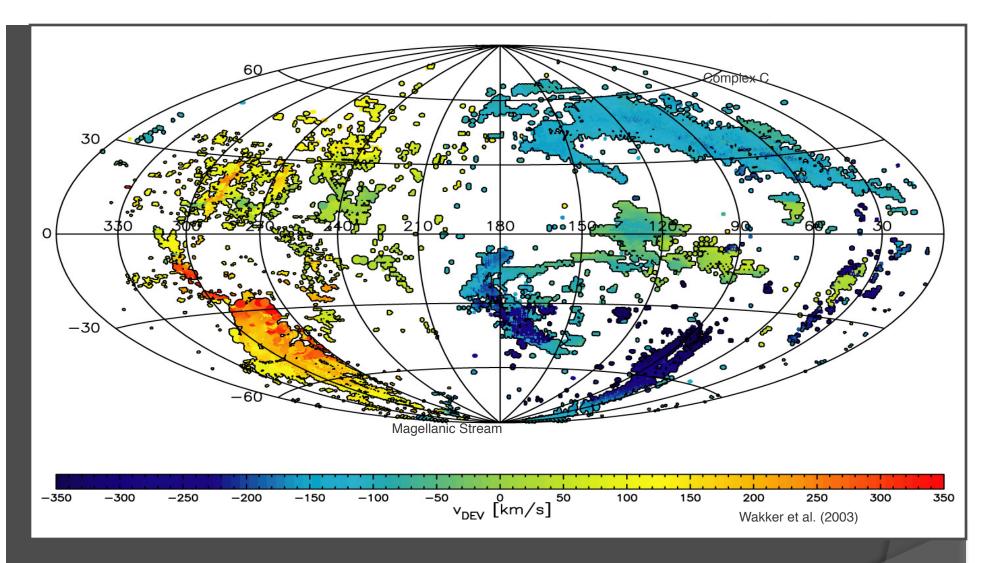
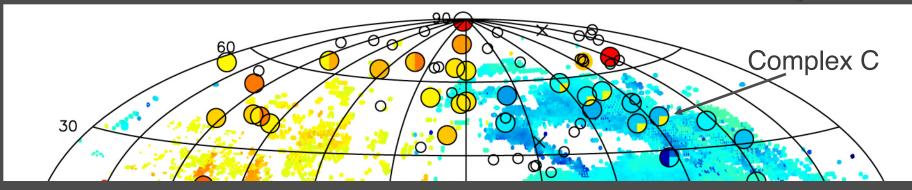

Zech et al. 2008

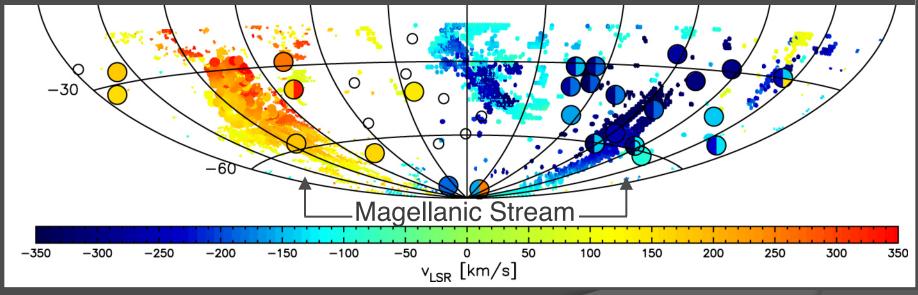

Image Credit: Wakker & Richter SciAm 2004

HVC Probes of Outflow/Inflow, IGM,...

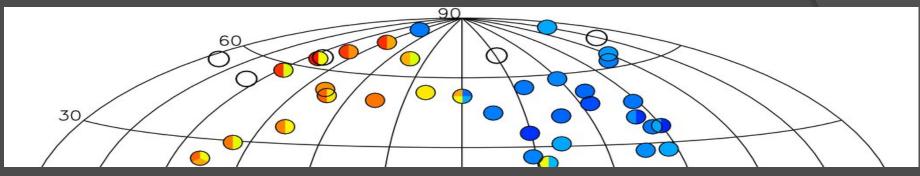



Images from Wakker & Richter,2004, SciAm See also, e.g., Sembach et al. 2003, Nicastro et al. 2003, Blitz et al. 1999
Putman et al. 2003
Fox et al. 2006,
Collins et al. 2005

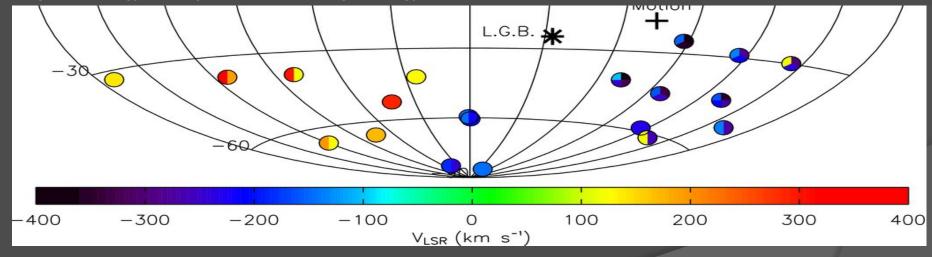
HVCs exhibit H I 21cm emission that covers ~37% of the sky at $N_{HI} > 7 \times 10^{17}$ cm⁻² (Murphy et al. 1995). Observations motivated by the >50% Mg II detection rate from FOS Key project (Savage et al. 1993) compared to 18% HI covering factor at at $N_{HI} > 2 \times 10^{18}$ cm⁻² (Wakker 1991).


Knowledge on distances, ionization, metallicities have only started to be estimated in the last ~15 years thanks in part to HST, FUSE, and ground based observations.

HI+OVIHVC Galactic Sky

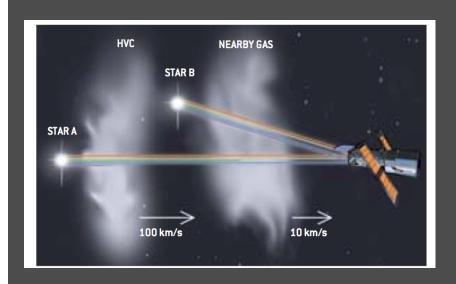

Covering fraction

60% - 85% of sky covered at $N(H^+) \ge 10^{18} \, \text{cm}^{-2}$ (for SMC metallicity)


Sembach, Wakker, Savage, et al. 2003 See also Fox et al. 2006, Collins et al. 2007 H I 21cm Emission FUSE O VI Absorption

Si III HVC Galactic Sky

Si III HVC coverage about 80-90%.

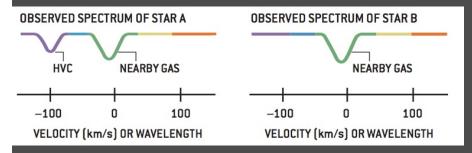

 $N_{HII} \approx (6 \text{ x } 10^{18} \text{ cm}^{-2})(Z_{Si}/0.2Z_{sun})^{-1}$; typical neutral fractions $N_{HI}/N_{H} \approx 0.01$ $M_{HVC} \sim 10^7 M_{sun} (d_{HVC}/10 \text{ kpc})^2 (Z_{HVC}/0.2Z_{sun})^{-1} -> <0.1 \text{ to 1 solar mass per year}$

Shull et al. 2009, Collins et al. 2009 (see also Richter et al. 2009 for Call observations)

STIS Si III Absorption

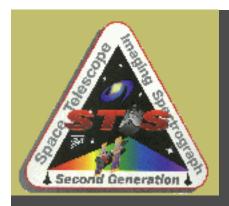
COS Program: Targeting Distant High-Latitude Stars

HVCs with N(HI)>10¹⁹ cm⁻² are found toward distant and high z-height stars:


Complex C at 10 kpc

Complex M at <4 kpc

Complex A at 4-10 kpc


(e.g., Wakker 2001, Wakker et al. 2007, Thom et al. 2008).

Cycle 17 Program:

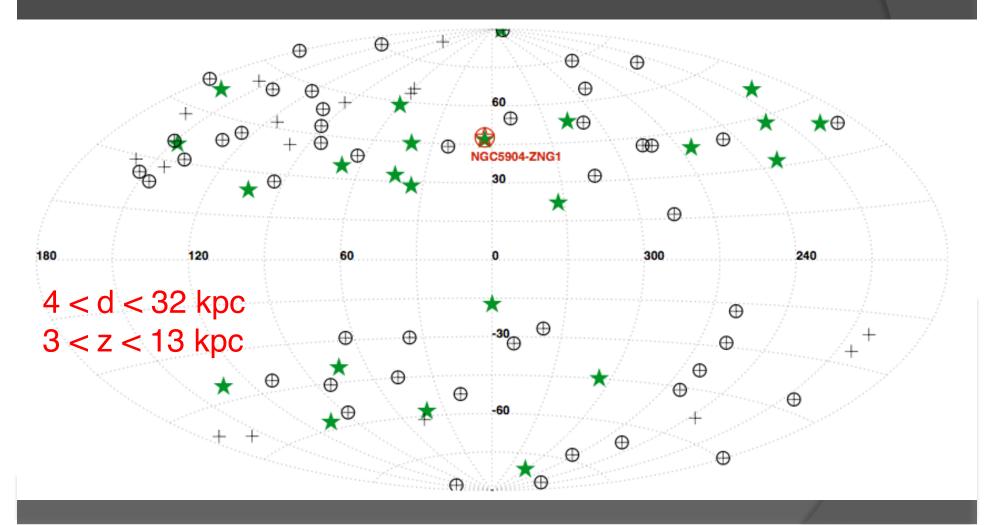
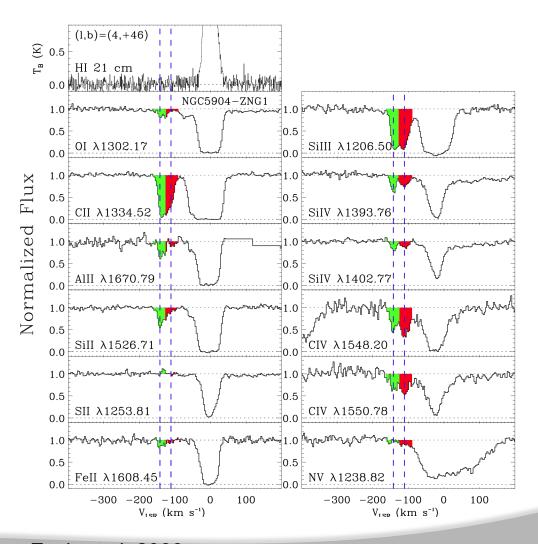

24 stars at 3<d<32 kpc and 3<z<13 kpc Blind survey COS G130M & G160M and STIS E140M 24 orbits

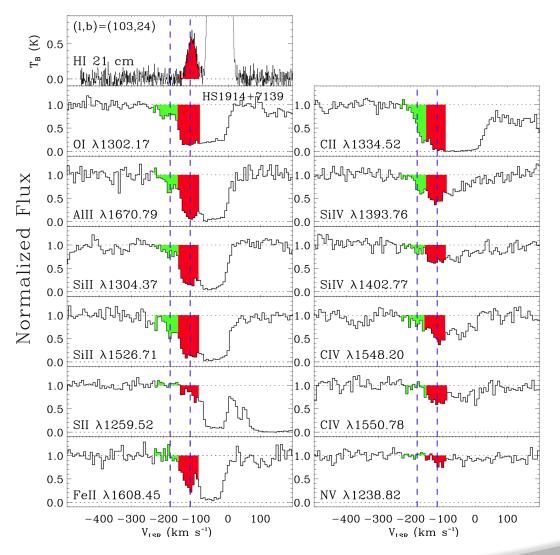
Illustration source: Wakker & Richter, SciAM, 2004



The Cycle 17 HST COS/STIS Program

First Example of Low HI Column HVCs Toward a Star

Two negative HVCs toward the center of the Galaxy at 7.5 kpc and z=+5.3 kpc


- -OVI and HI absorption lines are also detected thanks to FUSE observations.
- -Relative abundances:

[Fe/Si] = -0.3, [AI/Si] = -0.3

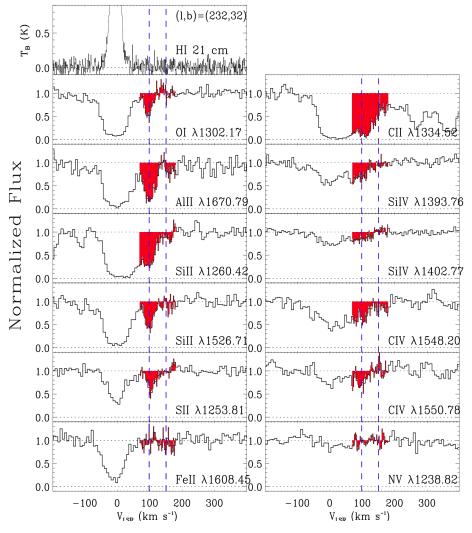
- ⇒ Evidence of dust
- ⇒ Likely a Galactic Origin
- ⇒ Galactic outflow, fountain
- -With OI and HI, we can directly deduce that: [O/H]=+0.2, supersolar abundance
- ⇒ Galactic Origin!
- ⇒ Galactic fountain

Very ionized, HII/H=0.97, HII/HI>>1 (N(HI)=10^{16.7} cm-²)

Example of Negative-Velocity HVCs Toward a Star

Two negative HVCs at d<15 kpc and z<6 kpc

-At -118 km/s: Galactic Outer arm, first direct distance estimate of this Galactic arm (d≤15 kpc, Galactocentric radius 17.7 kpc).


- -At -180 km/s:
- -[Fe/Si]<+0.2, [Al/Si]~+0.1, [C/Si]~0
- ⇒ No evidence of dust
- ⇒ Likely an Extragalactic Origin
- ⇒ Accretion

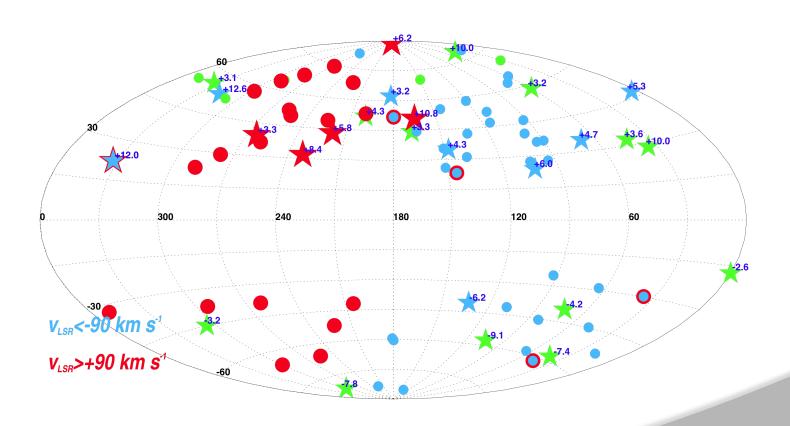
[O I/Si II]~ -0.5, [O I/C II]~ -0.5

-> Very ionized, HII/HI>>1

If 0.3 solar abundance, N(H II) ≥ 10^{18.2} cm⁻² N(H I) ~ 10^{17.7} cm⁻²

Example of a Positive-Velocity HVC Toward a Star

HVC at d<16 kpc and z<+8.4 kpc


[Fe/S] < -1.5, [AI/S] > -1.0 $[Si/S] \sim -1.2$, [Fe/Si] < -0.3

- ⇒ Evidence of dust
- ⇒ Likely a Galactic Origin
- ⇒ Galactic outflow, fountain

[O I/Si II]~ -0.7, [O I/S II]~ -2.1 -> Very ionized, HII/HI>>1

If solar abundance, $N(H II) \ge 10^{19.5} \text{ cm}^{-2}$ $N(H I) \sim 10^{17.3} \text{ cm}^{-2}$

HVCs toward Galactic stars (star symbols) with z-heights (kpc) and QSOs (circles, Sill)

Detection Rate Comparison between Galactic and Extragalactic Samples

Sample	HVC Detection Rate (%)
QSO sightlines – Si III (a)	80-90
QSO sightlines – O VI (b)	60-90
H I emission (>7x10 ¹⁷ cm ⁻²) (c)	37
Stellar sample (all)	50
Stellar sample (z >4 kpc and b>20°)	77

(a) Collins et al. 2009, Shull et al. 2009; (b) Sembach et al. 2003, Fox et al. 2006; (c) Murphy et al. 1995; stellar sample: Lehner & Howk (2011)

Comparison of Properties between Galactic and Extragalactic Samples

Extragalactic Sample	Stellar Sample
HI, OVI, CIV, SiIV, SiIII, CII, SiII, OI	HI, OVI, CIV, SiIV, SiIII, CII, SiII, OI
H II/H I >> 1	H II/H I >> 1
[Z/H] ≤ 0 (3 HVCs with OI and HI)	[Z/H] = +0.2 for 1 HVC
$100 < v_{LSR} < 400 \text{ km/s}$ ~100% of HVCs 100 < $ v_{LSR} < 200 \text{ km/s}$ ~25% of HVCs 200 < $ v_{LSR} < 400 \text{ km/s}$	100 < v _{LSR} < 200 km/s
distance? Associated with Complex C ~ 10 kpc, Magellanic Stream ~ 50-100 kpc	3 <d< 30="" kpc<br="">3< z <13 kpc</d<>
Origin(s)? Accretion, galactic interaction, outflow,WHIM(?)	Origins: Galactic fountain/outflow Accretion (Galactic inflow)

Other (low) N(HI) HVCs Near Galaxies

- ✓ HVCs between LMC and Milky Way (~50 kpc), probing the outflows from the LMC (Lehner et al. 2009, Staveley-Smith et al. 2003, Lehner & Howk 2007).
- ✓ HVCs detected toward other galaxies (M31, M33, e.g., Thilker et al. 2004, Westmeier et al. 2005, Putman et al. 2009).
- ✓ Lyman limit systems (HI 10¹⁶-10¹⁹ cm⁻²), likely higher redshift analogs of HVCs are found within <100 kpc from a galaxy (Stocke et al. 2010, Richter al. 2009, 2010, Lehner et al. 2009).

HVC: probes of galactic phenomena (accretion, outflow, galactic Interaction)

Summary

- Low HI column HVCs are unlikely to trace the warm-hot ionized medium.
- Instead many are located at 3<|z|<13 kpc from the Milky Way plane, and probably within <50-100 kpc for most of them.</p>
- They are therefore a key source of gas for future star formation and ingredient for studying the recycling of matter in the Universe.
- Our new understanding of the HVCs would not have been possible without HST and FUSE and the rich archive at MAST!
- Next few years look bright: COS observations of many QSOs will lead to better statistics/understanding of the covering factor, ionization, and metallicities.

Grazie mille - Thank you