The WFC3 Galactic Bulge Treasury Program

Thomas M. Brown
Space Telescope Science Institute
The WFC3 Galactic Bulge Treasury Program

Thomas M. Brown, Kailash Sahu, Alvio Renzini, Manuela Zoccali, Henry C. Ferguson, Jay Anderson, Ed Smith, Howard E. Bond, Dante Minniti, Jeff A. Valenti, Stefano Casertano, Mario Livio, Nino Panagia, Don A. VandenBerg, Elena Valenti, Jason Tumlinson, and Elizabeth Jeffery
Outline

• Historical perspective
• Overview of program
• Images, photometry, astrometry
• Preliminary ages & metallicities in the bulge populations
• Metallicities of exoplanet hosts
• Implications
Bulge Formation - Historical Paradigm

Protogalactic collapse

Internal secular evolution
driven by bar instabilities, dark matter halos, bars and oval distortions, spiral structure, nuclear black holes, galactic winds & fountains, etc.

common processes
star formation, gas recycling, metal enrichment, energy feedback via SNe, etc.

Galaxy mergers, RAM-pressure stripping of gas

Environmental secular evolution
driven by prolonged gas infall, minor mergers, galaxy harassment, etc.

Kormendy & Kennicutt (2004)
Conflicting evidence

- Bulge morphology implies prolonged evolution from secular instabilities

Boxy, peanut-shaped

- Bulge populations imply rapid formation (see also Ferreras et al. 2003)

Old

Metal-rich

Alpha-enhanced

New paradigm emerging

- IFU observations of z~2 galaxies reveal large, rotating, gas-rich, disks (Genzel et al. 2008; Forster Schreiber et al. 2009)
- Gas-rich & clumpy disks prone to instabilities that can drive bulge formation faster & earlier than traditionally associated with secular processes (Immeli et al. 2004; Elmegreen et al. 2009)
Program Goals

• Map the detailed star-formation history of the Galactic bulge in four distinct windows

• Calibrate a new HST photometric system for stellar population studies, using star clusters

• Measure accurate temperatures and metallicities for tens of thousands of stars in each bulge field, including 11 exoplanet hosts

• Calculate stellar mass function of a pure bulge population as a function of metallicity and position

• Obtain proper motions in each field for bulge/disk decomposition and kinematics
Deep HST bulge observations already exist - why do we need new ones?

- Observations did not provide wide wavelength coverage
- Bands could not distinguish the effects of reddening, age, and metallicity
- Different fields observed in different bands
- Most fields have single-epoch observations (no proper motions)
Main sequence = clock

horizontal branch

RGB

subgiant branch

6 Gyr

10 Gyr

14 Gyr

turnoff

main sequence

V-I (ABMAG)

I (ABMAG)
CMD also indicates metallicity.

$[\text{Fe/H}] = -1.31$

8 Gyr
10 Gyr
12 Gyr

$[\text{Fe/H}] = -0.71$

8 Gyr
10 Gyr
12 Gyr
With only 2 bands, it is difficult to disentangle age and metallicity in a highly reddened environment like the bulge.
Reddening-free indices of temperature & metallicity

- Temperature index using: V, J, H

$$[t] = (V - J) - (J - H) \frac{E(V-J)}{E(J-H)}$$

$$[t] = (V - J) - 5.8 (J - H)$$

- Metallicity index using: C, V, I

$$[m] = (C - V) - (V - I) \frac{E(C-V)}{E(J-H)}$$

$$[m] = (C - V) - 0.9 (V - I)$$

Reddening-free indices of temperature & metallicity

\[[t] = (V - J) - 5.8 (J - H) \ (\text{mag}) \]

\[[m] = (C - V) - 0.9 (V - I) \ (\text{mag}) \]

\[[\text{Fe/H}] = -0.8 \]

\[A_V = 1.8 \ \text{mag} \]

\[4 \ < \ \text{age} \ < \ 14 \ \text{Gyr} \]

Reddening-free indices of temperature & metallicity

\[[t] = (V - J) - 5.8 (J - H) \text{ (mag)} \]

\[[m] = (C - V) - 0.9 (V - I) \text{ (mag)} \]

Reddening-free indices of temperature & metallicity

\[[t] = (V - J) - 5.8 (J - H) \text{ (mag)} \]

\[[m] = (C - V) - 0.9 (V - I) \text{ (mag)} \]

\[[\text{Fe/H}] = -2.3, -1.8, -1.4, -1.1, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.5 \]

1.2 < A_v < 2.4 mag
4 < age < 14 Gyr

WFC3 Fields

2MASS image (Skrutskie et al. 2006)

<table>
<thead>
<tr>
<th>Field</th>
<th>l (deg)</th>
<th>b (deg)</th>
<th>R_{min} (kpc)</th>
<th>A_V (mag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanek's Window</td>
<td>0.25</td>
<td>-2.15</td>
<td>0.32</td>
<td>2.6</td>
</tr>
<tr>
<td>SWEEPS</td>
<td>1.25</td>
<td>-2.65</td>
<td>0.43</td>
<td>2.0</td>
</tr>
<tr>
<td>Baade's Window</td>
<td>1.06</td>
<td>-3.81</td>
<td>0.58</td>
<td>1.6</td>
</tr>
<tr>
<td>OGLE29</td>
<td>-6.75</td>
<td>-4.72</td>
<td>1.21</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Stanek’s Window

156x150 arcsec

6.5x6.1 pc

$R_{\text{min}} = 0.32$ kpc

$A_v = 2.6$ mag
SWEEPS

156x150 arcsec

6.5x6.1 pc

R_{min}=0.43 kpc

A_V=2.0 mag
Baade’s Window

156x150 arcsec
6.5x6.1 pc
$R_{\text{min}} = 0.58$ kpc
$A_V = 1.6$ mag
OGLE29

156x150 arcsec

6.5x6.1 pc

$R_{\text{min}} = 1.21$ kpc

$A_v = 1.5$ mag
SWEEPS

156x150 arcsec

6.5x6.1 pc

$R_{\text{min}} = 0.43 \text{ kpc}$

$A_v = 2.0 \text{ mag}$
SWEEPS CMD (motions in disk direction)
SWEEPS CMD (motions opposite disk direction)
All fields (IR)

Brown et al. (2010, ApJL, sub.)

Stanek's Window

SWEEPS

Baade's Window

OGLE29

10 Gyr
[Fe/H]=0

10 Gyr
[Fe/H]=0

10 Gyr
[Fe/H]=0

10 Gyr
[Fe/H]=0

J - H (mag)

J (mag)
Bulge stars on upper main sequence

Stanek’s Window
- $R_{\text{min}} = 0.32$ kpc
- [t] = (V - J) - 5.8 (J - H) (mag)

SWEEPS
- $R_{\text{min}} = 0.43$ kpc
- [t] = (V - J) - 5.8 (J - H) (mag)

Baade’s Window
- $R_{\text{min}} = 0.58$ kpc
- [t] = (V - J) - 5.8 (J - H) (mag)

OGLE29
- $R_{\text{min}} = 1.21$ kpc
- [t] = (V - J) - 5.8 (J - H) (mag)
Bulge stars & isochrones on upper main sequence

\[[m] = (C - V) - 0.9 (V - I) \text{ (mag)} \]

\[[t] = (V - J) - 5.8 (J - H) \text{ (mag)} \]

\[R_{\text{min}} = 0.32 \text{ kpc} \quad \text{Stanek's Window} \]

\[R_{\text{min}} = 0.43 \text{ kpc} \quad \text{SWEEPS} \]

\[R_{\text{min}} = 0.58 \text{ kpc} \quad \text{Baade's Window} \]

\[R_{\text{min}} = 1.21 \text{ kpc} \quad \text{OGLE29} \]

Brown et al. (2010, ApJL, sub.)
Metal-rich exoplanet hosts in SWEEPS field

- $R_{\text{min}} = 0.32 \text{ kpc}$
- Stanek’s Window
- $[\text{Fe/H}] = +0.5$

- $R_{\text{min}} = 0.43 \text{ kpc}$
- SWEEPS

- $R_{\text{min}} = 0.58 \text{ kpc}$
- Baade’s Window

- $R_{\text{min}} = 1.21 \text{ kpc}$
- OGLE29

Brown et al. (2010, ApJL, sub.)
Implied metallicities for bulge fields

- **Stanek’s Window**
 - $R_{\text{min}} = 0.32$ kpc
 - metallicities range from $[Fe/H] = -2$ to 0

- **SWEEPS**
 - $R_{\text{min}} = 0.43$ kpc
 - metallicities range from $[Fe/H] = -2$ to 0

- **Baade’s Window**
 - $R_{\text{min}} = 0.58$ kpc
 - metallicities range from $[Fe/H] = -2$ to 0

- **OGLE29**
 - $R_{\text{min}} = 1.21$ kpc
 - metallicities range from $[Fe/H] = -2$ to 0

Brown et al. (2010, ApJL, sub.)
Bulge fields and metallicities

\[[M] = (C - V) - 0.9 (V - I) \text{(mag)} \]

\[[t] = (V - J) - 5.8 (J - H) \text{(mag)} \]

R\(_{\text{min}}\) = 0.32 kpc
Stanek’s Window

[Fe/H] = +0.5

R\(_{\text{min}}\) = 0.43 kpc
SWEEPS

R\(_{\text{min}}\) = 0.58 kpc
Baade’s Window

R\(_{\text{min}}\) = 1.21 kpc
OGLE29

Brown et al. (2010, ApJL, sub.)
Implications

- Bulge is dominated by old (10 Gyr) stars at all positions.
- Bulge exhibits declining metallicities at increasing radius.
- Preliminary analysis of bulge consistent with:
 - Classical dissipative collapse, or
 - Early, rapid evolution driven by instabilities in a gas-rich clumpy disk.
- Inconsistent with secular processes traditionally associated with peanut-shaped bulge.
- Exoplanets preferentially found at high metallicity in bulge (as in solar neighborhood; Fischer & Valenti 2005).
- Exoplanets may preferentially form in metal-rich environment.