Multi-band Infrared Mapping of the Galactic Nuclear Region

Q. D. Wang (PI), H. Dong, D. Calzetti (Umass),
Cotera (SETI), S. Stolovy, M. Muno, J. Mauerhan, (Caltech/IPAC/JPL),
C. C. Lang (U. of Iowa), M. R. Morris, E. A. Mills (UCLA), G. Schneider (U. Arizona)

Why Galactic Center?

The only nuclear region in which stellar population can be resolved. We can learn about:

- Spatial and kinematic distributions of individual stellar populations.
- Star formation mode and history.
- Initial mass function and mass/light ratio.
- Interplay among stars, the ISM, and the SMBH.

HST/NICMOS P α Emission Survey of the Galactic Center: 1.90 μ m Map

Arches cluster

15

ear)

une, 2008 two wavelength filters

rometry correction (to better than jions (Dong et al. 2010). ' continuum emission.

1.9 µm magnitude distribution

0.6 million stars are detected:

- accounting for > 80% light
- including all stars with M > 8 M_{\odot} and evolved lower mass ones.
- strong red clump indicates a major starburst about 300 Myr ago.

HST/NICMOS 1.87µm Map of the Galactic Center

- The 1.87 μ m filter covers the P α line.
- Subtracting the 1.9µm map from the 1.87µm map adaptively. \rightarrow A net P α line emission map.

Why do we need the HST?

- Only observable from the space
- Excellent imaging stability
- Little background due to the Earth's warm atmosphere

Wang et al. 2009

Ionized gas features resolved into arrays of organized linear filaments → strong local magnetic fields.

(c)

New Population of young massive stars

- ~170 stars show enhanced Pa emission.
- ~2/3 of them are located outside the three known clusters.
- 20 have been followed up spectroscopically, confirming that they are indeed massive stars (Mauerhan et al. 2009; 2010)
 - \rightarrow a new population of massive stars.

Detailed views of individual compact HII regions

Summery

- A new population of very massive stars in relative isolation and with strong winds.
- Fine filamentary structures of ionized diffuse gas indicating profound influence of local strong magnetic field.
- Compact nebulae, tracing various stages of massive star evolution
- Evidence for a major starburst ~ a few 10⁸ yrs ago.

We need a WFC3 IR imaging survey!

- SED fits for individual stars \rightarrow foreground extinction distribution and intrinsic spectral shape.
- Eventually proper motion mapping.

NICMOS image: Red: H, Green: 1.9 Blue: K

Extinction map from SED fits for individual stars

Great Observatory Survey of the GC

