
Astronomical Data Analysis Software and Systems VII
ASP Conference Series, Vol. 145, 1998
R. Albrecht, R. N. Hook and H. A. Bushouse, e

 Copyright 1998 Astronomical Society of the Pacific. All rights reserved.

ds.

Search and Retrieval of the AXAF Data Archive on the
Web using Java

Sumitra Chary and Panagoula Zografou

Smithsonian Astrophysical Observatory, AXAF Science Center, Boston,
MA 02138

Abstract. An important component of the AXAF Data Archive is the
interface through the WWW. Internet applications are moving beyond de-
livering static content to more complex dynamic content and transaction
processing. While HTML and CGI based interfaces have been possible
for some time, it was not until the advent of JDBC (Java1 Database Con-
nectivity) that a uniform and powerful interface to the different types of
servers in the archive, with secure access to proprietary data, could be-
come a reality.
This paper presents a multi-tier architecture which integrates the data
servers, Web server and a HTTP/JDBC gateway and enables data on any
of the data servers in the AXAF archive to be available to clients using
a Web browser. This Web-based solution to data browsing is currently
available for the contents of the AXAF observing catalog and other cata-
logs in the archive. A Java API for other database applications to access
the data is presented. Performance issues and security limitations and
workarounds are discussed.

1. Introduction

The AXAF archive architecture involves a number of servers, RDBMS servers
for managing relational data and archive servers that manage datafiles. Access
to datafiles is provided by existing client applications which send data ingest,
search and retrieval requests in a 4gl language to an archive server (Zografou
et al. 1997). An architecture was developed to build a powerful and uniform
interface to the various servers through the World Wide Web. The advent of
JDBC a specification for an API that allows Java applications to access various
DBMS using SQL became the obvious choice to build this interface.

2. System Architecture

Figure 1 shows both the client-server architecture developed using the Database
vendor API (Zografou et al. 1997) where both the client and the data servers
communicate using the same protocol and the 3-tier architecture which allows

1Trademark of Sun Microsystems

408

Search and Retrieval of AXAF Data Archive 409

(CGI-data transformation)

Sybase Driver + API

JDBC (Javasoft)

(archive server)

ASCDS-db server
library

Database vendor API
(Sybase Open-Server

library)

TDS

TDS

TDS

TDS
SQL Server

Apache Web Server

Cascade Gateway

Open Server

Firewall

Server - side

Middleware

JConnect

Client Application

ASCDS-db client
library

Database vendor API

Network Protocol

Client - side

Client - Server

3 - Tier

HTTP

HTTP

Web Browser

(implements

Java Virtual

machine)

TDS - Native protocol for SQL Server and SYBASE

HTTP - Hypertext Tansfer Protocol

Open Server Applications

(Sybase Open-Client
Client Library)

TDS
Tunnelled

Figure 1. System Architecture [Client-Server and 3-Tier]

a Java client applet to communicate with the data servers behind a firewall.
The middle tier consists of Sybase jConnect2 for JDBC package. This includes
the Cascade HTTP Gateway3 which is the gateway to the RDBMS and archive
servers.

According to Java security restrictions, applets can only connect back to
the host they were downloaded from. If the Web server and database server were
on the same machine then the Cascade gateway is not required. But in this case
the data server hosts are behind a firewall hence the Cascade gateway acts as
a proxy and provides the path to the data servers. The HTML documents and
Java code are served from the Apache Web Server4 tree. The Apache Server is
also used to execute a cgi-script which performs transformations of input and
output data when required. Hence the Apache and the Cascade run on the same
host on different ports so that the applet downloaded from the Apache server
tree can connect back to the same host at the port of the Cascade gateway.

3. Search Operation

Searching involves querying databases on the SQL Server and viewing the re-
sults on the client screen or saving them in a file. Both command-line client
applications and Java applets have been written to send browse requests to the
archive and the database servers. The primary difference between the above

2http://www.sybase.com/

3http://www.cascade.org.uk/

4http://www.apache.org/

410 Chary and Zografou

User Request

Create file with result
contents

Send result
displayed to save

Cascade Gateway

FTP Server

result information
FTP File containing

Return result rows

Return result rows

User Request

User Request

Archive Server

Return result rows

SQL Server

Web Server
(cgi-script)

Applet

to ftp file
Return link

Save Result

Workaround

Figure 2. Search Element

two types of client requests is that the latter’s request goes through the Cascade
HTTP/gateway and then to the data server (Figure 1). The way the browse
request is handled on the server-side is the same for either client. The results are
received in the same way on the client-side and displayed. One major difference
is in saving the results obtained.

Due to Java applet security restrictions, files cannot be created on the client
filesystem. Hence the result contents are sent by the applet to a cgi-script on the
Web Server host which creates a file on its filesystem from the binary stream.
This file is then FTP’ed to the FTP server in a previously created location. The
cgi-script informs the client of this path which is displayed to the user.
In the future with JDK1.1 and a compatible Web browser it may be possible to
re-create files on the client side depending on authentication and access control
schemes. This would eliminate the extra step of passing data to a cgi-script.

4. Retrieve Operation

This involves retrieving files stored in an archive from the archive server via
metadata browsing in the SQL server. As shown in Figure 3 the ideal retrieve
scenario would function the same way for either client type. The client would
receive the filenames and file contents as a binary stream, re-create the files
on the client filesystem. Since this is not possible with applets due to security
restrictions, two methods are presented to resolve this issue.

1. The file contents are forwarded to the middle-tier and the files are re-
created on the Web server’s filesystem. These files are then FTP’ed to the
FTP Server and the client is notified of the link to access the files. This is
similar to the “save results” method outlined above.

2. The second method is much more efficient both from the performance point
of view and because it avoids of excessive network activity. The applet in
this case only serves as the GUI and passes the user input to the Web
server. The Web server now behaves as the client to the archive server.
The CGI-script directly executes the “arc4gl” client application which is
the command-line client application. Hence it has the ability to send and
receive data from the archive server. The files retrieved are re-created on
the Web server filesystem. Then they are FTP’ed over to the FTP server.
The link to the files is returned and displayed at the client applet end. If
the files are of a format supported for viewing in the Web Browser e.g.,

Search and Retrieval of AXAF Data Archive 411

Archive Server

Web Server

Applet

SQL
Server

FTP Server

Workaround

Ideal

Binary Stream of File Contents

Binary Stream of File Contents
4GL

Binary Stream

FTP files

Re-create files

client application

(cgi-script)

Data Archive

Archive Server

Web Server
(cgi-script)

Applet

FTP files

4GL

4GL

Command-line
(arc4gl)

Workaround

Executes arc4gl

Link to ftp file

Re-create files 4GL

SQL

Server
FTP Server

Binary Stream
of File contents

Link to ftp file

Figure 3. Retrieve Element

HTML, GIF, PS then the files, if placed under the Web Server tree, can
be directly viewed by the user.

To port this setup to various environments such as test and production, a cgi-
script is used to dynamically create the HTML file presented below with the
appropriate information.

<HTML>
<applet

code = "ocat.class"
codebase = "base URL of applet to be displayed"
archive = ocat.zip
width=700 height = 650>
<param name=proxy value="IP address:port of Cascade Gateway">
<param name=host value="IP address of DataServer">
<param name=port value="Port of DataServer">
<param name=uid value=""> <param name=pass value="">
<param name=cgiserver value="IP address of Web Server">
<param name=cgiserverport value="Port of Web Server">

</applet>
</HTML>

References

Zografou P., Chary, S., DuPrie, K., Harbo, P., & Pak K. 1998, “The ASC Data
Archive for AXAF Ground Calibration”, this volume

