
Astronomical Data Analysis Software and Systems VII
ASP Conference Series, Vol. 145, 1998
R. Albrecht, R. N. Hook and H. A. Bushouse, e

 Copyright 1998 Astronomical Society of the Pacific. All rights reserved.

ds.

Building Software from Heterogeneous Environments

M. Conroy, E. Mandel and J. Roll

Smithsonian Astrophysical Observatory, Cambridge MA 01801

Abstract. The past decade has witnessed a movement within the as-
tronomical software community towards Open Systems. This trend has
allowed projects and users to build customized processing systems from
existing components. We present examples of user-customizable systems
that can be built from existing tools, based on commonly-used infras-
tructure: a parameter interface library, FITS file format, Unix, and the
X Windows environment. With these common tools, it is possible to
produce customized analysis systems and automated reduction pipelines.

1. Introduction

Users and developers are confronted everyday with the challenge of cobbling
together existing software to solve problems. However, much of the available
software has features, limitations, and architectural assumptions that make it
useless for new applications. It always is worth reminding ourselves that the
primary purpose of software is to solve the users’ problem: Subject Oriented
Software (Coggins 1996) and not just to use trendy technology.

Currently, there is no set of uniform interfaces for the large body of existing
astronomical software. Re-using a piece of software is complicated by the archi-
tectural buy-in of large systems which require mutually exclusive environments.
(Mandel & Murray 1998).

Controlling complexity is the major problem facing software projects. The
best watchword for developers is: keep it simple. Developers must keep tasks,
their interfaces and execution environment as simple as possible because the
lifetime of user software may be one execution. Therefore the most important
software design features are ease of modification and adaptability.

2. System Components and Architecture

Software developers must address issues such as portability, platform indepen-
dence, and freedom from licensing restrictions if they wish to free the users from
these concerns so that the latter can solve analysis problems on their desktop.
Users automatically gain the benefit of easily exchanging both software and
data with collaborators independent of local environments. Toward this aim,
the MMT Instrumentation project1 surveyed the existing options and selected

1http://cfa-www.harvard.edu/mmti/

150

Building Software from Heterogeneous Environments 151

open-systems components to prototype several of our important applications.
The critical components we have identified are:

• Environment A command line interface with a scripting language is es-
sential for rapid prototyping and automated systems: a GUI is nice but
not sufficient. POSIX components provide the architecture and platform
independence for scripting languages, tools and software libraries. e.g.,
Korn shell, ANSI C and C++ libraries, fortran90. POSIX also provides
communication mechanisms such as pipes, shared memory and mapped
files which can be used to efficiently pass data between processes.

• Analysis Tools and Libraries A tool-box of parameter driven tasks is
needed to supply the necessary science algorithms. We have developed a
system that we call UnixIRAF2, that allows non-interactive IRAF tasks to
be wrapped with generic Korn shell wrappers to emulate Open-IRAF tools.
Starbase3 provides another toolkit consisting of a full-featured relational
data base (RDB) system. This POSIX-compliant toolkit can be used to
construct complex data selection, extraction and re-formatting operations
by piping together sequences of tools. These tasks are linked with the SAO
Parameter Interface.

Open-IRAF will provide C and C++ bindings for the IRAF libraries.
SLALIB4 will provide the world coordinate system libraries.

• Visualization Tools/GUI GUI-driven imaging and graphing applica-
tions are essential to aid users in understanding both the raw data and
the analysis results. Tcl/Tk provides an architecture and machine inde-
pendent widget set and a layered GUI written in a scripting language. We
use SAOtng5 for imaging and plan to re-use the Starcat catalog widget to
add catalog position overlays.

• Data Files The tool box needs to run directly on standard machine inde-
pendent data files, to free the users from the additional concerns of data
conversion, archival formats and transportability. FITS bintable and im-
age extension formats and ASCII tables are a necessary (but not sufficient)
condition for providing machine independent formats. Additional conven-
tions need to be added to FITS for metadata, world coordinate systems
and other related information. This issue is complex and is covered in
more detail in the Data Model work by several groups.

FITS files are supported as native format both in IRAF for images and
the TABLES layered package for (bin)tables. Starbase is being extended
to support FITS bintable.

2http://cfa-www.harvard.edu/mmti/mmti/

3http://cfa-www.harvard.edu/∼john/starbase

4http://http://star-www.rl.ac.uk/libs/slalib/mainindex.html

5http://hea-www.harvard.edu/RD/

152 Conroy, Mandel and Roll

• Glue There needs to be a mechanism by which these components can com-
municate with one another. The SAO Parameter Interface is such a mech-
anism, providing an API, interactive parameters, dynamic parameters and
automatic parameter set configuration. When combined with XPA, it can
connect analysis tools to visualization tools to build GUI-driven analysis
applications (Mandel & Tody, 1995).

3. SAO Parameter Interface

Most of the items cited above exist in a variety of freely available implemen-
tations. However, the currently available parameter file systems have serious
limitations when inserted into a heterogeneous environment. We therefore de-
veloped backward-compatible extensions to the traditional IRAF interface to
create an SAO Parameter Interface6 that allows multi-layered options for con-
figuring applications and automating test scripts and pipelines:

• Default Parameter File Override We have added the ability to over-
ride the default parameter file specification. This allows multiple default
parameter files to exist and be selected at runtime. E.g. radial profile
@@hst prf or radial profile @@rosat prf

• Common Data Sets We have added a Common Data Set database to
define dynamically configurable sets of parameter files. This provides the
capability of automatically switching parameter files between pre-defined
configurations based on the current environment: e.g., different time-
dependent calibrations, several filters for the same instrument, or dozens
of observations (and filenames).

• Dynamic Parameter Values There are many situations where the best
parameter value is a function of other parameters or data. The parameter
interface provides a mechanism to invoke an external tool to dynamically
calculate a parameter value, returning the result to a program when it
accesses this parameter at run-time.

3.1. Pipeline Applications

These parameter enhancements allow the developer to write generic pipelines
that can be re-configured for different instruments and configurations. Mean-
while the user sees only a simple, explicit, reproducible batch script with no
configuration dependencies because a complete, explicit record of the as-run
parameters is saved.

The default parameter specification permits all the as-run parameters to be
preserved even when the same program is run more than once. The common data
set specification allows the pipeline to to be reconfigured when settings change,
such as: filter in use, CCD-binning or instrument calibration. The dynamic
parameters allow quantities such as bias and gain to be calculated from the
current dataset and used as parameters by the calibration tools. These features

6http://cfa-www.harvard.edu/mmti/mmti

Building Software from Heterogeneous Environments 153

also allow pipelines to be reconfigured for different instruments so they can be
re-used for new projects.

3.2. Interactive Analysis Applications

Dynamic parameters are very useful for coupling interactive tasks, allowing anal-
ysis to be driven easily the from image display. A simple scenario might be:
image the data with SAOtng, draw regions of interest with the mouse, invoke
analysis tools on the selected file and region. In this case Dynamic Parameters
are used by the analysis tool at runtime to determine both the current file and
the selected region to analyze. The dynamic values are determined by small
scripts that invoke XPA to query the image display for the current file and the
current region.

3.3. User Applications

Users often need to sequence several tools. The difficulties in making these
user-scripts generic and re-usable stem from the fact that the filename changes
at each step of the script and often the same parameter quantity has different
names and/or units in each of the independent tools. Common Data Sets allow
users to define an ASCII table to alias different tool-name:parameter-name pairs.
Dynamic parameters can be used to automatically perform unit conversions.

4. Conclusions

The MMT Instrumentation group has used these components in all phases of
the project, from instrument control and data acquisition to automated re-
duction pipelines and visualization. The toolbox consists primarily of existing
IRAF analysis tools, special purpose instrument control tools and ICE tools.
UnixIRAF enables the ICE data acquisition software to be controlled by simple
POSIX-compliant Unix shell scripts in the same way as the instrument con-
trol software and the pipelines. Pipelines have been developed for CCD data
reductions, spectral extractions and wavelength calibrations. Multi-chip CCD
data are reduced efficiently by running multiple parallel pipelines for each chip.
SAOtng and XPA are used to visualize mosaiced CCD data.

This approach has been highly successful. But it presents some challenges
to the astronomical community: Who will contribute tools and components?
Are developers rewarded for producing adaptable software?

References

Mandel, E. & Murray S. S. 1998, this volume
Mandel, E. & Tody, D. 1995, in ASP Conf. Ser., Vol. 77, Astronomical Data

Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne &
J. J. E. Hayes (San Francisco: ASP), 125

Coggins, J. M. 1996, in ASP Conf. Ser., Vol. 101, Astronomical Data Analysis
Software and Systems V, ed. George H. Jacoby & Jeannette Barnes (San
Francisco: ASP), 261

154

Part 4. Data Analysis Applications

156

