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Abstract.
We present a computing code for modelling energy flux distributions,

photometric indices and spectral line profiles of (non-)radially pulsating
Main-Sequence stars. The model is based on the perturbation-expansion
formalism taking into account geometrical and nonadiabatic effects.

1. Introduction

For a given mode of oscillation the harmonic time dependence, exp(iωnlmt), and
spherical harmonic horizontal dependence, Y m

l (θ, φ), are assumed for the first
order perturbed quantities. The mass displacement for the spheroidal modes is
described by y- and z-eigenfunctions and for toroidal modes by τ -eigenfunctions,
cf. Dziembowski & Goode (1992). In the case of slowly rotating stars one
can use the zero-rotation approximation to describe stellar pulsations. Such a
model was used already by Cugier, Dziembowski & Pamyatnykh (1994) to study
nonadiabatic observables of β Cephei stars. Apart from ynlm(r) and znlm(r) it
is desirable to use the eigenfunction pnlm(r), connected with the Lagrangian
perturbation of pressure, and the fnlm(r)−eigenfunction, which describes the
variations of the local luminosity. In the nonadiabatic theory of pulsation the
eigenvalues ωnlm and the eigenfunctions are complex (cf. e.g., Dziembowski
1977) and ψnlm = arg(fnlm/ynlm) is the phase lag between the light and radius
variations.

2. Continuum Flux Behaviour

2.1. Numerical Integration

The monochromatic flux of radiation is given by

Fλ =
∫
Iλ(r, θ, φ, ~o · ~n)~o · ~ndS

R2
. (1)

where ~o · ~n is the scalar product of the observer’s direction, ~o, and the normal
vector, ~n, and dS- the area of the surface element.

In the program the specific intensity data for the new generation line-
blanketed model atmospheres of Kurucz (1996) were used in order to study the
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continuum flux behaviour and photometric indices. Kurucz’s (1994) data con-
tain monochromatic fluxes for 1221 wavelengths and monochromatic intensities
at 17 points of µ̃ = ~o · ~n. Using these data one can interpolate the monochro-
matic intensities for the local values of Teff, log g and µ̃. We can also introduce
the linear or quadratic shape for the limb-darkening law as defined by Wade &
Rucinski (1985).

2.2. Semi-analytical Method

Integrating Eq.1 over the surface in the linear approach we can obtain the semi-
analytical solution, cf. Daszynska & Cugier (1997) for details,

∆Fλ

F 0
λ

= εdlm0N
0
l

[
(T1+T2) cos((ωnlm−mΩ)t+ψ̃nlm)+(T3+T4+T5) cos(ωnlm−mΩ)t

]
.

(2)
In this formula the temperature effects are described by two terms T1 and T2,
whereas the effects of the pressure changes during the pulsation cycle are in-
cluded in T4 and T5. The T2 and T5 terms reflect the sensitivity of the limb-
darkening parameters to temperature and gravity variations, respectively. T3

corresponds to the geometrical effects. N 0
l is a normalizing factor.

3. Accuracy of the Model Calculations

We examined how the results are influenced by different methods of integration
over the stellar surface. The following cases were considered:

- Model 1: the semi-analytical method (Eq.2) with the quadratic form for
the limb-darkening law,

- Model 2: the numerical integration of Eq.1 with the quadratic form for
the limb-darkening law; constant limb-darkening coefficients corresponding to
the equilibrium model were assumed,

- Model 3: the same as Model 2, but the limb-darkening coefficients were
interpolated for local values of Teff and log g,

- Model 4: numerical integration over stellar surface with specific intensities
interpolated for the local values of Teff, log g and µ̃.

As an example we consider the energy flux distribution and nonadiabatic
observables for a β Cep model. We chose the stellar model (logT 0

eff = 4.33668,
log g0 = 4.07842) calculated with OPAL opacities. This model shows unstable
l = 0, 1 and 2 modes of oscillations. We calculated theoretical fluxes and the
corresponding Strömgren photometric indices at pulsating phases ϕ = 0.05 n
(n=0,...,20). Subsequently amplitudes and phases of the light curves were com-
puted by the least-square method. The accuracy of these calculations can be
estimated from Table 1, which gives the results for the Models 1 - 4. The cal-
culations were made on Sun Ultra 1 (192 MB RAM, 166 MHz) computer. The
CPU time per 1 pulsating stellar model is from about 2 seconds (for Model 1)
to about 10 hours (for Model 4).
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Table 1. Nonadiabatic observables.

l Ay
∗ ϕy Au/Ay ϕu − ϕy

Au−y

Ay
ϕu−y − ϕy

Model 1 0 0.0211 3.3166 2.0024 -0.0381 0.8241 -0.0701
Model 2 0 0.0211 3.3167 2.0000 -0.0381 0.8220 -0.0715
Model 3 0 0.0213 3.3167 2.0000 -0.0381 0.8220 -0.0715
Model 4 0 0.0211 3.3168 2.0000 -0.0381 0.8217 -0.0718

Model 1 1 0.0207 3.1916 1.5958 0.0004 0.4876 0.0038
Model 2 1 0.0268 3.1929 1.6119 0.0002 0.4975 0.0022
Model 3 1 0.0268 3.1929 1.6112 0.0002 0.4975 0.0022
Model 4 1 0.0222 3.1910 1.5526 0.0009 0.4535 0.0048

Model 1 2 0.0204 3.2077 1.3476 0.0164 0.2560 0.0790
Model 2 2 0.0195 3.2083 1.3457 0.0161 0.2568 0.0801
Model 3 2 0.0195 3.2083 1.3457 0.0161 0.2568 0.0801
Model 4 2 0.0077 3.2084 1.3170 0.0160 0.2459 0.0804

∗assumed

4. Line Profiles

The velocity field of pulsating stars may be found by calculating the time deriva-
tive of the Lagrangian displacement. Including the first order effect, the radial
component vp as seen by a distant observer is:

vp = ~vpuls · (−ez) = Re{iωnlm[cos θδr(R, θ, φ, t)− r sin θδθ(R, θ, φ, t)]}

= ωnlm

[
cos θr[ynlm(r)+

2mΩ
ω0

nlm

ỹnlm(r)]
l∑

k=−l

dlmk(i)Nk
l P

k
l (θ) sin((ωnlm−mΩ)t+kφ)

−r sin θ
(
[znlm(r) +

2mΩ
ω0

nlm

z̃nlm]
l∑

k=−l

dlmk(i)Nk
l

∂P k
l (θ)
∂θ

sin((ωnlm −mΩ)t+ kφ)

+
τ ′l+1,m

sin θ

l+1∑
k=−(l+1)

dl+1,m,k(i)kNk
l+1P

k
l+1(θ, φ) cos((ωnlm −mΩ)t+ kφ)

+
τ ′l−1,m

sin θ

l−1∑
k=−(l−1)

dl−1,m,k(i)kNk
l−1P

k
l−1(θ, φ) cos((ωnlm −mΩ)t+ kφ)

)]
. (3)

The radial velocity due to pulsation and rotation is then

vr = vp − ve sin i sin θ sinφ, (4)

where ve corresponds to the equatorial velocity of rotation and i is the angle
between the rotation axis and the direction to the observer.

We illustrate the predicted behaviour of Si III 455.262 nm line profiles for
stellar model given in Sect.3. We considered Kurucz’s (1994) model atmospheres
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Figure 1. Theoretical SiIII 455.262 nm line profiles for various modes.

with the solar chemical composition and the microturbulent velocity vt = 0. All
calculations were made for the amplitude of the stellar radius variations ε = 0.01
and rigid rotation. Figures 1a− f show the theoretical line profiles for different
phases of pulsation for i = 77◦ and the equatorial velocity Ve = 25 km s−1. The
spectra are given in absolute units. In order to avoid overlap, vertical offsets
were added to each spectrum using the relationship: Fλ + n · 0.02 · 10−9.
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