
Astronomical Data Analysis Software and Systems VII
ASP Conference Series, Vol. 145, 1998
R. Albrecht, R. N. Hook and H. A. Bushouse, e

 Copyright 1998 Astronomical Society of the Pacific.  All rights reserved.

ds.

Other People’s Software

E. Mandel and S. S. Murray

Smithsonian Astrophysical Observatory, Cambridge, MA 02138, Email:
eric@cfa.harvard.edu

Abstract.
Why do we continually re-invent the astronomical software wheel?

Why is it so difficult to use “other people’s software”? Leaving aside
issues such as money, power, and control, we need to investigate prac-
tically how we can remove barriers to software sharing. This paper will
offer a starting point for software cooperation, centered on the concept
of “minimal software buy-in”.

1. Introduction

What shall we do about “other people’s software”? There certainly is a lot
of it out there. As software developers, we are well aware of the benefit of
sharing software between projects. So why do we resist using other people’s
software? How is it that we find reasons to ignore existing software by repeating
the mantra, “of course we should share, but in this particular case ...”.

The factors that cause us to ignore the software of others are many and
varied. A cynic might argue that it all comes down to money, power, and
control. There is truth to such a position, but dealing with economic, social,
and psychological factors is well beyond the scope of this short paper – or maybe
any paper! Moreover, it may be that these issues always will hinder efforts to
share software, unless and until our culture changes or our genes improve. But
we still are left with the question of whether we can do anything today to improve
the situation regarding software sharing – even while we acknowledge that our
efforts may be only chipping away at the edges of a much larger problem.

We can, for example, try to expose technical impediments to sharing soft-
ware. And surely the first barrier to using other people’s software is “buy-in”,
that is, the effort needed to adopt and use such software. At first glance, it
would seem that buy-in encompasses technical issues such as:

• the relative ease of installation of software

• the time and effort required to learn enough about the software to be able
to use and evaluate it

• the design changes required to utilize the software – that is, the architec-
tural assumptions made by the software itself

142



Other People’s Software 143

But these factors are not the whole story. Our basic attitude toward software
buy-in, our very willingness to consider using the software of others, has changed
with changing times.

2. Three Eras of Software Buy-in

From the Dark Ages until the mid-1980’s, we lived in a Proprietary Era that
demanded total buy-in. This was the age of isolated mini-computers running
closed operating systems that were written in assembly language. Given the
enormous cost of these machines and the different interfaces they presented to
users and developers alike, there was little possibility of utilizing equipment from
more than one vendor.

The astronomical software we wrote was influenced heavily by this propri-
etary culture: it was tailored to individual platforms with little or no thought to
portability. A lot of our code was written in assembly language to save memory
in these 64 Kb environments and to increase performance on slow CPUs. We also
used fortran compilers that incorporated vendor-specific language extensions,
program overlays, and other non-portable techniques.

All of these efforts served the aim of optimizing software meant to be used
only within individual projects. The central idea behind our efforts was to
build the best possible software for our own systems. Indeed, our community
was “data-center centered”: astronomers visited data centers and telescopes to
utilize project hardware and software on their data. Under such circumstances,
buy-in required duplication of hardware and thus was a decision made by high-
level management.

The Proprietary Era came to an end in the mid-1980’s with the rise of work-
stations based on the Unix operating system. The central strength of Unix was
its portability, and by adopting this little known operating system, workstation
vendors changed the climate of software development overnight. We witnessed
the rise of the Consortium Era, in which portable application programming in-
terfaces (APIs) were developed by consortia of (often competing) organizations.
The best example of this sort of effort was the X Consortium, an alliance of
75 large and small companies who agreed to standardize graphics and imaging
for workstations on the X Window System. In doing so, they made possible
unparalleled opportunities for developing portable software on a wide spectrum
of machines.

In the astronomical community, the new push to portability led to the
development of “virtual” analysis environments such as IRAF, AIPS, MIDAS,
and XANADU. These systems offered sophisticated analysis functionality for
almost all of the popular machines used in astronomy. Designed to be complete
environments for user analysis, they offered buy-in at the architectural/API
level. Once an analysis environment was chosen for a given project, buy-in was
accomplished by mastering that environment and then tailoring the software
design to exploit its strengths and evade its weaknesses. API-based buy-in
established a new set of expectations for software development and use.

We believe that the Consortium Era is over, and that we have entered into
a new Free-For-All Era. The most visible evidence of this change is the recent
demise of the X Consortium. But this trend away from consortia-based software



144 Mandel and Murray

also is seen in the astronomical community, where there has been a weakening
of long-term alliances between development groups. This weakening is an out-
growth of the maturity of our current analysis systems: with an overwhelming
amount of software increasing the overlap between systems, it has become harder
to choose between them. Furthermore, new development tools such as Java and
Tcl/Tk have increased the pace of software creation, while shortening individual
program lifetimes. The current watch-word seems to be “let’s run it up the flag
pole and see who salutes”. Software is created, offered, and abandoned with
startling rapidity. It is little wonder that consortia cannot keep pace with this
explosion of software. Their decline has given way to temporary alliances that
exploit the latest technology offering.

3. Minimal Buy-in Software

In such a fast-paced world, everyone is hedging their bets. It is becoming in-
creasingly difficult to choose between software offerings whose longevity is ques-
tionable. It is even harder to invest time and effort in rapidly changing software.
With so much software and so much uncertainty, we try to use everything and
commit to nothing. Having little time or patience to investigate new software,
we demand that software be immediately usable, with no buy-in at all, before
we are willing to try it out.

For example, distributed objects are being hailed as the key to using other
people’s software. And indeed, the concept of hundreds of black-box services
being available on a wide area “message bus” is very appealing. It promises a
new world in which individual missions and telescopes can offer services specific
to their data, while in turn making use of services provided by other groups.

But the reality of distributed objects does not match the advertising. Cur-
rent schemes (CORBA, ToolTalk, OLE) require substantial architectural or even
hardware buy-in. These systems have complex APIs, and some of them even
have new language requirements. Such a high buy-in cost presents a dilemma:
who will commit first to a complex distributed object architecture? Who is
willing to build software that only will run, for example, on a ToolTalk-enabled
platform, thereby shutting out users who do not run ToolTalk (for example,
nearly all Linux users)? Such a design decision simply is not viable in a dis-
tributed community such as ours, where portability is taken for granted. We are
lead to the conclusion that community buy-in is necessary in order for current
distributed object schemes to succeed – and this brings us back to the original
problem!

Perhaps we need a new way of looking at the problem of other people’s
software. Perhaps we need “minimal buy-in” software, that is, software that is
too easy not to try out.

The key to minimal buy-in software is that it seeks to hide from its users
the complexity of complex software. This means striking a balance between
the extremes of full functionality (in which you can do everything, but it is
hard to do anything in particular) and naive simplicity (in which it is easy to
do the obvious things, but you can’t do anything interesting). Minimal buy-in
acknowledges that design decisions must be made up-front in order to achieve
this balance.



Other People’s Software 145

Another way of expressing this is to say that minimal buy-in software caters
to developers as if they were users. It achieves ease of use for developers by
emphasizing simplifications such as:

• easy installation with auto configuration: untar, make, go ...

• no special system set-up, and especially no need for root privileges

• immediate functionality on the desktop, so that it can be tried and evalu-
ated easily

• integration with already-familiar user and developer tools

• use of familiar files (ASCII, FITS)

These concepts often will lead to design and implementation features that
are different from the usual conclusions of software engineering and computer
science. For example, applying minimal buy-in concepts to message buses and
distributed objects might lead to “non-classical” requirements such as:

• no need for a special intermediate message-passing process; use “whatever
is around”

• configure using ASCII files

• send and receive messages/data at the command line

• utilize a familiar pattern-matching syntax for broadcasting

We need more research in the area of minimal buy-in software. We do not
know, for example, how an effort to develop minimal buy-in software relates
to more sophisticated implementations. Would such software be seen as pre-
cursors to a full system? Or would it be accepted as a full replacement? The
balance between functionality and ease of use needs to be explored further to
gain experience with minimal buy-in techniques.

At SAO, we are working on minimal buy-in messaging, using the X Public
Access (XPA) mechanism as a base-line. We are extending XPA’s point-to-point
functionality to support broadcast messaging using well known data formats and
pattern-matching syntax. We will maintain XPA’s popular command-line sup-
port (xpaset and xpaget), which also provides a simple programming interface.
Our evolving efforts are available at http://hea-www.harvard.edu/RD/.

It should be emphasized once again that the concept of minimal buy-in is
only one step toward the software cooperation that is so elusive to our commu-
nity. Issues of money, power, and control still loom large in the background of
any discussion of software sharing. But it remains true that we need to explore
such partial solutions while working on the larger issues.

Acknowledgments. This work was performed in large part under a grant
from NASA’s Applied Information System Research Program (NAG5-3996),
with support from the AXAF Science Center (NAS8-39073).


