
Astronomical Data Analysis Software and Systems VII
ASP Conference Series, Vol. 145, 1998
R. Albrecht, R. N. Hook and H. A. Bushouse, e

 Copyright 1998 Astronomical Society of the Pacific. All rights reserved.

ds.

A Multidimensional Binary Search Tree for Star Catalog
Correlations

D. Nguyen, K. DuPrie and P. Zografou

Smithsonian Astrophysical Observatory, Cambridge, MA 02138

Abstract. A multi-dimensional binary search tree, k-d tree, is proposed
to support range queries in multi-key data sets. The algorithm can been
used to solve a near neighbors problem for objects in a 19 million entries
star catalog, and can be used to locate radio sources in cluster candidates
for the X-ray/SZ Hubble constant measurement technique. Objects are
correlated by proximity in a RA-Dec range and by magnitude. Both RA
and Dec have errors that must be taken into account. This paper will
present the k-d tree design and its application to the star catalog problem.

1. Problem Description

One of the requirements for creating the Guide and Aspect Star Catalog for
the AXAF (Advanced X-ray Astrophysics Facility) project was to calculate a
number of spoiler codes for all objects in the catalog. One of these spoiler codes
was calculated based on the distance between an object and its nearest neighbor,
and on their magnitude difference. Another group of spoiler codes depended on
finding the magnitude difference between an object and the brightest object
within a specified radius, where the radius ranged from 62.7 arcmin to 376.2
arcmin. These calculations had to be performed on all 19 million objects in
the catalog in a reasonable amount of time. Each object had 14 attributes,
taking up 75 bytes of space, resulting in a size of approximately 1.5 GB for the
entire catalog. In order to solve this problem we needed a way to search the
data by RA, Dec and magnitude fast so repeated searches for each object in the
database would be possible within our time limitations. Two different options
were immediately available none of which however was ideal.

The first option would use the format in which the catalog is distributed
and accessed by a number of applications with relatively simple data needs.
This is 9537 grid FITS files, each covering a small region of the sky. Since all
objects within a file are close to each other in RA and Dec, it is possible to do
most positional calculations on a file-by-file basis. In our case, where we were
concerned with near neighbors, it would be necessary to deal with a number of
neighboring files at at time: the central file whose objects we were calculating
near neighbors for, and the surrounding files so we could be sure to find all the
near neighbors out to the largest radius. By dealing with a small subset of the
data at a time it is possible to load the data in memory but one still has to scan
all records in memory until a match is found. This is a time consuming process
for the amount of data in the catalog.

485

486 Nguyen, DuPrie and Zografou

Another option was to use a relational database which provides a structure
much easier to search than a flat file. The limitation here was the number
of dimensions in the search. Although one may create a number of indexes
on different fields, including multi-dimensional, any given search is really only
using the index in one dimension and scans in all other dimensions. These
disk based scans were time consuming and resulted in a performance which
was unacceptable. It became clear that a preferably memory based true multi-
dimensional search structure was needed.

2. Associative Search

An orthogonal range query for records with multiple keys, say k number of
keys, such as the problem described above, is commonly known as associative
search. In its general form, this problem can formally be described as : the data
structure of a record is a (k+1)-tuple, (key1,key2,..,keyk, I) where keyi is one
of the k key components and I is the additional information field of the record.
In the problem above, key1 is RA, key2 is Dec, key3 is magnitude and I refers
to any other fields that need to be modified as a result of the calculation. An
orthogonal range query is to find all objects which satisfy the condition

li ≤ keyi ≤ ui (1)

for i = 1, ... k, where li and ui are the lower and upper ranges of key keyi.
A variety of methods have been proposed for solving the multiple keys access
problems, unfortunately there is no particular method which is ideal for all
applications. The choices for the problem at hand were narrowed down to two :
a Multidimensional k-ary Search Tree (MKST) and a k-dimensional (k-d) tree.

2.1. Multidimensional k-ary Search Tree

A MKST is a k-ary search tree generalized for k-dimensional search space in
which each non-terminal node has 2k descendants. Each non-terminal node
partitions the records into 2k subtrees according to the k comparisons of the
keys. Note that at each level of the tree, k comparisons must be made and since
there are 2k possible outcomes of the comparisons, each node must have 2k

pointers. The number of child pointers grow exponentially as a function of the
dimension of the search space which is a waste of space since many child pointers
usually remain unused. An MKST in two (k=2) and three (k=3) dimensional
search space is called a quadtree and octree, respectively.

2.2. k-d Tree

A k-d tree is a binary search tree generalized for a k-dimensional search space.
Each node of the k-d tree contains only two child pointers, i.e., the size of the
node is independent of the number of the dimensional search space. Each non-
terminal node of the k-d tree splits its subtree by cycling through the k keys of
the k-dimensional search space. For example, the node of the left subtree of the
root has a record with value for key key1 less or equal to value for key key1 for
the root; the node of the right subtree of the root has a record with value for
key key1 greater than the value for key key1 for the root. The nodes at depth

A Binary Search Tree for Star Catalog Correlations 487

one partition their subtrees depending on the value for the key key2. In general,
nodes at depth h are split according to key h mod k. Note that at each level of
the tree only one comparison is necessary to determine the child node. All the
attributes of the stars are always known in advanced hence a balanced k-d tree,
called an optimized k-d tree, can be built. This is done by recursively inserting
the median of the existing set of data for the applicable discriminator as the
root of the sub tree. An optimized k-d tree can be built in time of O(n log n),
where n is the number of nodes in the tree. A range search in a k-d tree with n
nodes takes time O(m + k n(1− 1/k)) to find m elements in the range.

3. k-d Tree vs k-ary Search Tree

The k-d tree and the MKST do not exhibit any efficient algorithms for main-
taining tree balance under dynamic conditions. For the problem at hand, node
deletion and tree balancing are not necessary. The k-d tree was chosen over the
MKST for the simple reason that it is spatially (2k vs 2 child pointers per node)
and computationally (k vs 1 comparisons at each level of the tree) more efficient
to the MKST as the dimension k increases. The advantage of the MKST over
the k-d tree is that the code is slightly less complicated to write.

4. Data Volume Limitation

If the k number of keys to be searched for contain RA, Dec and some other
attributes then one can minimize the number of nodes in the tree by utilizing
only the near neighbor FITS files. If RA and Dec are not a subset of the k
number of keys to be searched then the grid FITS files cannot be utilized and
all the stars must be inserted in the nodes of the tree. This could potentially be
a problem since the size of the catalog is 1.5 GB. The solution of this problem
is to store the k number of keys and the tree structure of the internal nodes
in main memory subject to the size of available memory, while the information
fields of each star can reside on disk. The disk based informational fields can be
linked with the tree structure with the mmap utility.

Acknowledgments. We acknowledge support from NASA through grant
NAGW-3825.

References

Finkel, R. A. & J. L. Bentley, 1974, “Quadtrees: A data structure for retrieval
on composite keys,” Acta Informatica 4, 1

J. L. Bentley, 1979, “Multidimensional Binary Search Trees Used for Associative
Searching,” Communications of the ACM 19, 509

J. L. Bentley, 1979, “Multidimensional Binary Search Trees in Database Appli-
cations,” IEEE Transactions on Software Engineering SE-5, 333

H. Samet, 1984, “The Quadtree and Related Hierarchical Data Structures,”
Computing Surveys 16, 187

