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Abstract. Positive iterative deconvolution is an algorithm that applies
non-linear constraints, conserves energy, and delivers stable results at
high noise-levels. This is also true for Richardson-Lucy like algorithms
which follow a statistical approach to the deconvolution problem.

In two-dimensional computer experiments, star-like and planet-like
objects are convolved with band-limited point-spread functions. Photon
noise and read-out noise are applied to these images as well as to the point-
spread functions being used for deconvolution. Why Richardson-Lucy
like algorithms favor star-like objects and the difference in computational
efforts are discussed.

1. Introduction

The increasing availability of computing power fuels the rising interest in iter-
ative algorithms to reconstruct an unknown object distribution O(x), that was
blurred by a linear system’s point-spread function P (x). The measured image
distribution I(x) is then known to be

I(x) = P (x) ∗O(x), (1)

with ∗ denoting convolution.
In the case of band-limited point-spread functions or point-spread functions

with incomplete coverage of the Fourier domain (interferometry), information is
lost and therefore, deconvolution is not possible. Instead of one unique solution,
a space of distributions solves (1) (Lannes, Roques & Casanove 1987). This
raises the question of how the algorithms choose their reconstruction out of the
space of possible solutions.

2. Algorithms

Richardson-Lucy like algorithms use a statistical model for image formation and
are based on the Bayes formula

p(P ∗O|I) =
p(I |P ∗O) p(P ∗O)

p(I)
, (2)

where p(P ∗O|I) denotes the probability of an event at (P ∗O)(x), if an event at
I(x) occured. Müller (1997) optimized (2) for O(x) by functional variation. For
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Figure 1. Simulated object on the left, and point-spread function
that simulates aberrations by atmospheric turbulence of a ground-
based telescope on the right (short exposure).

the case of setting the probability p(O(x)) to Poisson statistic the optimization
leads to the algorithm invented by Richardson (1972) and Lucy (1974)

Ôi+1(x) = Ôi(x)

[
P (−x) ∗ I(x)

P (x) ∗ Ôi(x)

]
, (3)

with Ôi(x) denoting the iterated object distribution for reconstruction. Setting
the probability distribution to have Gauss statistics (Müller 1997) leads to

Ôi+1(x) = Ôi(x)
I(x) ∗ P (−x)

[P (x) ∗ Ôi(x)] ∗ P (−x)
. (4)

Both algorithms intrinsically apply the positivity constraint and conserve energy.
Positive iterative deconvolution expands the deconvolution to a converging

sum. In between iteration-steps the positivity constraint is applied such that
the equation

I(x) = Ôi(x) ∗ P (x) + Ri(x) (5)

is always satisfied, with Ri(x) denoting the residual of the sum. (Pruksch &
Fleischmann 1997)

3. Simulation

In order to test the algorithms for astronomical objects, the simulated object
distribution O(x) consists of one planet-like object, and five star-like objects as
shown in Figure 1 on the left. The planet-like object in the center is a picture
of minor planet Ida1. The star-cluster on the lower left has brightness ratios of
1:2:3:4 (right:left:upper:center). The star in the upper right is ten times brighter
than the weakest star in the cluster and allows to determine the point-spread
function.

1http://www.jpl.nasa.gov/galileo/messenger/oldmess/Ida2.gif
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Figure 2. Convolved image with noise consistent to 108 photons per
image on the left, and reconstruction by Richardson-Lucy algorithm
on the right.

All pictures consist of 256 by 256 pixels and show Ida in full contrast
(gamma correction 0.7). The smaller picture on the right side of each pic-
ture shows phase (no gamma correction) and modulus (gamma correction 0.25)
of the corresponding spectrum. The spectrum is shown for positive horizontal
frequencies only, since the values of the negative frequencies are the complex
conjugate of the positive ones. The origin of the phase is located on the left
center and the origin of the modulus in the center of the small picture.

Different band-limited point-spread functions have been applied to the ob-
ject, but only one is discussed and illustrated in Figure 1 on the right. The
point-spread function simulates wavefront aberrations of approximately ±3π.
This is typical for a ground-based telescope that suffers from atmospheric tur-
bulence. The band-limit is visible in the spectrum, since any value beyond the
circle is zero (grey for phase and black for modulus).

The peaks in the point-spread function are best seen in Figure 2 on the left
which shows the convolved image I(x). In order to avoid spurious information
due to round-off errors, the point-spread function was calculated and convolved
with the object in the Fourier domain. The contributions beyond the band-limit
in Figure 2 on the left originate from noise that was added to the image after
convolution.

4. Results

The number of iterations needed by the algorithms to deconvolve the images was
in the range of 20 to 100. The computational effort per iteration is dominated
by the number of Fourier transforms. The algorithm by Müller is the fastest by
performing only two Fourier transforms per iteration, followed by positive iter-
ative deconvolution needing three and Richardson-Lucy with four. To measure
convergence, another two Fourier transforms are needed for the Richardson-Lucy
like algorithms. If convergence is tested for every iteration-step then positive
iterative deconvolution is the fastest algorithm.

All algorithms resolve the objects, as shown by the reconstructions by
Richardson-Lucy in Figure 2 on the right, the algorithm by Müller in Figure
3 on the left and positive iterative deconvolution in Figure 3 on the right.
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Figure 3. Reconstruction by Müller algorithm on the left, and re-
construction by positive iterative deconvolution on the right.

The Richardson-Lucy like algorithms seem to perform better in the recon-
struction of stars, whereas positive iterative deconvolution shows more details
for the planet-like object. This is due to the fact that positive iterative decon-
volution uses only the positivity constraint, whereas the other algorithms allow
statistical deviations. This is clearly seen by comparing the phase distribution of
the reconstructions with that of the original object. Since the phase is the most
important information, positive iterative deconvolution delivers in this sense the
best solution.

5. Summary

Richardson-Lucy like algorithms lead to satisfactory reconstructions. Especially
in situations with bad signal-to-noise ratio, the results are very stable. Due to the
statistical process of optimization, a different phase distribution is reconstructed,
which is favors star-like objects.

Positive iterative deconvolution reconstructs the original data as far as it is
available in the measured image and adds information only consistent to that
data and the positivity constraint. Therefore, it shows equal quality for all
objects. Since positive iterative deconvolution is also the fastest algorithm it
is the algorithm of choice, if the reconstructions have to be consistent with
measurements.
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