
Astronomical Data Analysis Software and Systems VII
ASP Conference Series, Vol. 145, 1998
R. Albrecht, R. N. Hook and H. A. Bushouse, e

 Copyright 1998 Astronomical Society of the Pacific. All rights reserved.

ds.

Message Bus and Distributed Object Technology

Doug Tody

IRAF Group, NOAO1, PO Box 26732, Tucson, AZ 85726

Abstract.
In recent years our applications have become increasingly large and

monolithic, despite successful efforts to structure software internally at
the class library level. A new software architecture is needed to break
these monolithic applications into reusable components which can easily
be assembled to create new applications. Facilities are needed to allow
components from different data systems, which may be very different in-
ternally, to be combined to create heterogeneous applications. Recent
research in computer science and in the commercial arena has shown us
how to solve this problem. The core technologies needed to achieve this
flexibility are the message bus, distributed objects, and applications frame-
works. We introduce the concepts of the message bus and distributed
objects and discuss the work being done at NOAO as part of the Open
IRAF initiative to apply this new technology to astronomical software.

1. Overview

In this decade we have seen our software become increasingly large and complex.
Although our programs may be well structured internally using hierarchically
structured class libraries, the programs have grown large and monolithic, with a
high degree of interdependence of the internal modules. The size of the programs
and their relatively high level, user oriented interface makes them inflexible and
awkward to use to construct new applications. As a result new applications
usually have to be constructed at a relatively low level, as compiled programs,
an expensive and inflexible approach. The high degree of integration charac-
teristic of programming at the class library level makes it difficult to construct
heterogeneous applications that use modules from different systems.

The key technology needed to address this problem, being developed now
by academia and commercial consortiums, is known as distributed objects. Dis-
tributed objects allow major software modules to be represented as objects which
can be used either stand-alone or as components of distributed applications.
Tying it all together is the message bus, which provides flexible services and
methods for distributed objects to communicate with one another and share

1National Optical Astronomy Observatories, operated by the Association of Universities for
Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science
Foundation.

146

Message Bus and Distributed Object Technology 147

data. Applications are built by linking precompiled components and services
together at runtime via the message bus. This paper presents the message bus
and distributed object framework being developed by NOAO and collaborators
as part of the Open IRAF initiative. This project is funded in part by the NASA
ADP and AISR programs.

2. Message Bus Concepts

The message bus is a facility used to bind, at runtime, distributed objects (pro-
gram components) to construct applications. Components, which are things like
data services, display or graphics services, computational services, or program
interpreters, execute concurrently and communicate at runtime via the message
bus. Components can dynamically connect to or disconnect from the message
bus at runtime. The usage of the term “bus” is analogous to the hardware bus
in a computer: components are like cards that plug into the bus, and the ap-
plication program executes in an interpreter component analogous to the CPU.
In effect the message bus framework is a virtual machine, built from highly
modular, interchangeable components based on an open architecture, with ap-
plications being the software available for this virtual machine.

Data
Service

Compute
Service

Message Bus
Message

Bus
Concepts

Message Bus
Console

Client
Component

Client
Component

Request

(Host 1) (Host 2)

Broadcast Event

Figure 1. Message Bus Concepts

The message bus is also a means of structuring software, in that it defines
a system-level software architecture. Classical structuring techniques are used
to construct the individual components, which can be very different from one
another internally, for example written in different languages. Applications are
composed at a high level, relying upon components for most of their functional-
ity. Components can be large, substantial programs in their own right, capable
of independent execution, although from the point of view of the message bus
architecture they are merely interchangeable software components which share
a standard interface to the message bus. Other components will be custom
built compute modules (e.g., implementing science algorithms) developed for
the application. Applications frameworks are integrated suites of components
providing a complete environment for building some class of applications.

148 Tody

3. Message Bus Capabilities

In addition to providing a range of messaging capabilities, the message bus
provides facilities for service registration and lookup, autostart of services, and
distributed execution. Message bus clients (e.g., components or services) can
execute on any host computer connected to the message bus, allowing distributed
applications to be easily constructed. The message bus can be either started
when an application is run, or “booted” stand-alone in which case a subsequent
client will automatically connect to and use the existing message bus. A console
client is used to examine and control the state of the message bus and monitor
system activity.

As illustrated in Figure 1, most messages fall into one of two primary classes.
Requests are messages sent to a particular component or object to request that
it perform some action (i.e., to invoke a method). Requests may be either
synchronous or asynchronous. A synchronous request is similar to a remote pro-
cedure call. Events are messages which are broadcast by a “producer” client,
and received by zero or more “consumer” clients. Clients subscribe to the classes
of events they which to receive. The message bus keeps track of the event sub-
scription list for each client and uses it to construct a distribution list when
broadcasting an event. In general a producer does not know what other clients,
if any, may be consuming the events it generates. Events are inherently asyn-
chronous.

At the simplest level the message bus is responsible only for classifying
messages by type and handling message distribution and delivery. The actual
content of a message, that is the data contained in a message, is determined
by the messaging protocol used by the clients. Multiple messaging protocols are
possible on the same bus although not necessarily recommended.

The message bus is responsible for the reliable delivery of messages and
ensures that messages are received in the order in which they were sent. There
is no fixed limit on the size of a message, although other data transport mech-
anisms such as shared memory may be useful if bulk data is to be transmitted,
particularly if it is to be shared by multiple clients. The bus will queue messages
for delivery if needed. Point-to-point links are possible in cases where a high
data rate is required and only two clients are involved.

4. Existing Messaging Implementations

The first thing we did when we started this project was research on all the exist-
ing implementations we could find of anything resembling a message bus. Ap-
proximately two dozen were examined, including CORBA, OLE/COM, Tooltalk,
some preliminary Java-based implementations, PVM, MPI, ACE, KoalaTalk,
EPICS, IMP, Glish, XPA, and others. We were surprised to find that despite
all the work in this area, no adequate solution existed. CORBA probably comes
closest: it is comprehensive and is based on some very good computer science,
but it is expensive, proprietary, bloated, implementations differ, and it is only
available on a subset of the platforms we use. CORBA might be a good choice
for a local system but it is problematic for use in a product which will be widely
distributed and freely available. The chief competition is OLE/COM from Mi-

Message Bus and Distributed Object Technology 149

crosoft, which is only available for Windows. Of the freeware implementations
we found PVM (Parallel Virtual Machine) to be the most interesting. Although
it was developed by the physics community for parallel computation and it is not
really a message bus, it is compact, portable, and efficient; the basic facilities
provided are good and provide much of the low level functionality needed for a
message bus.

5. Open IRAF Message Bus Research

The NASA ADP-funded Open IRAF initiative (http://iraf.noao.edu/projects/)
will eventually replace IRAF by a more modern, open system. This will be
composed of products which will be usable stand-alone or as modules in other
systems. The existing IRAF applications will be migrated to this new frame-
work. The message bus architecture discussed here is being used to develop Open
IRAF. In keeping with the Open IRAF approach, the message bus software will
be a separate product usable independently of the future IRAF system.

Since no suitable message bus implementation is currently available and the
technology is likely to continue to evolve rapidly in any case, our approach has
been to develop a message bus API which can be layered upon existing standard
low level messaging products. A prototype based on PVM has been developed
and is in use now within the Mosaic Data Handling System at NOAO. We are
also developing a distributed shared object (DSO) facility which will allow data
objects such as images to be simultaneously accessed by multiple clients via the
message bus. Distributed shared memory techniques are used to provide efficient
access to bulk data. Messaging is used to provide the access interface used by
clients, to inform clients of any changes to the data object, and to ensure data
integrity.

6. Conclusions

The message bus, distributed shared object technology, and applications frame-
works based on the message bus provide a powerful way to structure large appli-
cations and data systems to control complexity. Applications can be developed
at a high level, relying upon sophisticated, well tested components for much of
their functionality.

Systems based on the message bus architecture are inherently modular and
open, allowing very different sorts of components to be intermixed. Since com-
ponents can be large and complex products, with few restrictions on how they
are implemented internally, it becomes easier for a large number of people to
make significant contributions to a data system, reducing the dependence on key
personnel.

Frameworks and applications suites layered on a common message bus have
the potential to allow different data analysis packages to share the same low
level infrastructure. Systems based on the message bus and distributed objects
have the potential to combine the resources of disparate data systems groups as
well as individual developers in the astronomical community.

